Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material

被引:176
|
作者
Kazemian, Arash [1 ]
Salari, Ali [2 ]
Hakkaki-Fard, Ali [2 ]
Ma, Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai, Peoples R China
[2] Sharif Univ Technol, Dept Mech Engn, RASES Lab, Azadi Ave, Tehran, Iran
基金
中国国家自然科学基金;
关键词
Photovoltaic thermal system; Phase change material; Thermodynamic analysis; CFD; Parametric analysis; CHANGE MATERIAL PCM; SOLAR COLLECTOR; HEAT-TRANSFER; ELECTRICAL EFFICIENCY; PVT SYSTEM; PERFORMANCE; PLATE; NANOFLUID; MODEL; VALIDATION;
D O I
10.1016/j.apenergy.2019.01.103
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, a comprehensive three-dimensional model of photovoltaic thermal system integrated with phase change material (PVT/PCM) is developed and simulated. The effect of some key parameters using parametric analysis on performance of PVT/PCM system with water as working fluid is investigated. Parameters considered in this study include the properties of PCM (i.e. melting temperature, enthalpy of fusion and thermal conductivity), solar radiation and mass flow rate. The parametric analysis ranges are selected according to the properties of the most of available PCMs on the market, which shows the practical application of the numerical research. Furthermore, a three-dimensional model of PVT system is simulated as well to compare its performance with PVT/PCM system. An enthalpy-porosity method is used to simulate the solidification and melting of PCM. To solve the governing equations, the pressure-based finite volume method using transient solver in ANSYS Fluent 16.2 is employed. Moreover, the SIMPLE algorithm is selected to provide the coupling between the pressure and velocity components. The results present that the PVT/PCM system has lower surface temperature and coolant outlet temperature compared to the PVT only system. The results also shows that enhancing the melting temperature of PCM from 40 degrees C to 65 degrees C increases the surface temperature from 51.53 degrees C to 58.78 degrees C, while it reduces the percentage of melted PCM from 82.7% to 9.6%. It is also concluded that as the thermal conductivity of PCM enhances, both electrical and thermal energy efficiency of PVT/PCM system increase.
引用
收藏
页码:734 / 746
页数:13
相关论文
共 50 条
  • [1] Operational and structural parametric analysis of a photovoltaic/thermal system integrated with phase change material
    Huo, Dongxin
    Zhang, Tao
    Shi, Zhengrong
    Chen, Haifei
    Li, Qifen
    Cai, Jingyong
    SOLAR ENERGY, 2024, 272
  • [2] Parametric investigation of photovoltaic-thermal systems integrated with porous phase change material
    Asefi, Ghazaleh
    Ma, Tao
    Wang, Ruzhu
    APPLIED THERMAL ENGINEERING, 2022, 201
  • [3] Thermodynamic Investigation of a Photovoltaic/Thermal Heat Pipe Energy System Integrated with Phase Change Material
    Alsagri, Ali Sulaiman
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (02) : 2625 - 2643
  • [4] Thermodynamic Investigation of a Photovoltaic/Thermal Heat Pipe Energy System Integrated with Phase Change Material
    Ali Sulaiman Alsagri
    Arabian Journal for Science and Engineering, 2024, 49 : 2625 - 2643
  • [5] Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis
    Cui, Yuanlong
    Zhu, Jie
    Zoras, Stamatis
    Hassan, Khalid
    Tong, Hui
    ENERGIES, 2022, 15 (14)
  • [6] Numerical investigations of concentrated photovoltaic thermal system integrated with thermoelectric power generator and phase change material
    Rejeb, Oussama
    Lamrani, Bilal
    Lamba, Ravita
    Kousksou, Tarik
    Salameh, Tareq
    Jemni, Abdelmajid
    Hamid, Abdul Kadir
    Bettayeb, Maamar
    Ghenai, Chaouki
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [7] Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material
    Hosseinzadeh, Mohammad
    Sardarabadi, Mohammad
    Passandideh-Fard, Mohammad
    ENERGY, 2018, 147 : 636 - 647
  • [8] Analysis and performance prediction of a building integrated photovoltaic thermal system with and without phase change material
    Alsagri, Ali Sulaiman
    Alrobaian, Abdulrahman A.
    ENERGY, 2024, 310
  • [9] Numerical investigation on thermal performance of the solar wall integrated with phase change material
    Duan, Shuangping
    Huang, Changyan
    Meng, Chuang
    ENERGY AND BUILDINGS, 2025, 336
  • [10] Numerical modeling and optimization of tube flattening impacts on the cooling performance of the photovoltaic thermal system integrated with phase change material
    Mohammadi, Seyedali
    Jahangir, Mohammad Hossein
    Astaraei, Fatemeh Razi
    APPLIED THERMAL ENGINEERING, 2024, 246