SBAS-Based Satellite Orbit Correction for the Generation of DInSAR Time-Series: Application to RADARSAT-1 Data

被引:57
|
作者
Pepe, Antonio [1 ]
Berardino, Paolo [1 ]
Bonano, Manuela [1 ,2 ]
Daniel Euillades, Leonardo [3 ]
Lanari, Riccardo [1 ]
Sansosti, Eugenio [1 ]
机构
[1] IREA CNR, I-80124 Naples, Italy
[2] Univ Roma La Sapienza, Fac Ingn, DICEA, I-00184 Rome, Italy
[3] Univ Nacl Cuyo, Inst CEDIAC, RA-5500 Mendoza, Argentina
来源
关键词
Differential SAR interferometry (DInSAR); orbit correction; RADARSAT-1; Small BAseline Subset (SBAS); SURFACE DEFORMATION ANALYSIS; STRAIN ACCUMULATION; INSAR; INTERFEROMETRY; CALIFORNIA; FAULT; ERS; ALGORITHM; SCATTERERS; EARTHQUAKE;
D O I
10.1109/TGRS.2011.2155069
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present an algorithm aimed at correcting satellite orbit information for the generation of differential SAR interferometry (DInSAR) deformation time-series. Our approach exploits small baseline differential interferograms, to preserve their spatial coherence, and is directly compatible with the Small BAseline Subset (SBAS) DInSAR technique. In particular, the algorithm investigates the differential phase gradient directly computed from the wrapped interferograms, and is focused on the estimation of the perpendicular baseline and of the parallel baseline azimuth rate components, separately performed along the range and azimuth directions, respectively. Starting from the estimations carried out on the interferograms, we then retrieve the orbit correction associated with each SAR acquisition of our time-series by solving a system of linear equations via the SVD method, extending the SBAS inversion concept also to the orbit estimation problem. Key application of this technique is the generation of deformation time-series from interferometric sequences of RADARSAT-1 SAR acquisitions which are available for several areas in the world, but are characterized by significantly low accuracy of the orbit information. The presented results, obtained by processing a data set consisting of 33 RADARSAT-1 images of Big Island at Hawaii, show that we may retrieve DInSAR time-series with sub-centimeter accuracy, thus confirming the effectiveness of the proposed technique.
引用
收藏
页码:5150 / 5165
页数:16
相关论文
共 50 条
  • [1] RADARSAT-1 Deformation Time-Series Generation by Using the SBAS-DInSAR Algorithm
    Euillades, L.
    Pepe, A.
    Berardino, P.
    Bonano, M.
    Sansosti, E.
    Lanari, R.
    2009 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2009, : 407 - +
  • [2] RADARSAT-1 Deformation Time-Series Analysis Based on the SBAS-DInSAR Algorithm
    Bonano, M.
    Pepe, A.
    Euilades, L. D.
    Sansosti, E.
    Berardino, P.
    Lanari, R.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3253 - +
  • [3] On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique
    Pepe, A
    Sansosti, E
    Berardino, P
    Lanari, R
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (03) : 265 - 269
  • [4] THE PARALLEL SBAS-DINSAR PROCESSING CHAIN FOR MASSIVE GENERATION OF SENTINEL-1 DEFORMATION TIME-SERIES
    Manunta, M.
    Berardino, P.
    Bonano, M.
    Casu, F.
    De Luca, C.
    Fusco, A.
    Lanari, R.
    Manzo, M.
    Pepe, A.
    Zinno, I.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2231 - 2234
  • [5] Automatic and Systematic Sentinel-1 SBAS-DInSAR processing chain for deformation time-series generation
    De Luca, C.
    Bonano, M.
    Casu, F.
    Fusco, A.
    Lanari, R.
    Manunta, M.
    Manzo, M.
    Pepe, A.
    Zinno, I
    INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERIS/PROJMAN / HCIST 2016, 2016, 100 : 1176 - 1180
  • [6] The Parallel SBAS-DInSAR Processing Chain for the Generation of National Scale Sentinel-1 Deformation Time-Series
    De Luca, C.
    Bonano, M.
    Casu, F.
    Manunta, M.
    Manzo, M.
    Onorato, G.
    Zinno, I.
    Lanari, R.
    CENTERIS 2018 - INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS / PROJMAN 2018 - INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT / HCIST 2018 - INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERI, 2018, 138 : 326 - 331
  • [7] SENTINEL-1 DATA EXPLOITATION FOR AUTOMATIC SURFACE DEFORMATION TIME-SERIES GENERATION THROUGH THE SBAS-DINSAR PARALLEL PROCESSING CHAIN
    Zinno, Ivana
    Bonano, Manuela
    Buonanno, Sabatino
    Casu, Francesco
    De Luca, Claudio
    Fusco, Adele
    Riccardo, Lanari
    Manunta, Michele
    Manzo, Mariarosaria
    Pepe, Antonio
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5529 - 5532
  • [8] NEW ADVANCES OF THE P-SBAS APPROACH FOR THE GENERATION OF SAOCOM-1 L-BAND DINSAR TIME-SERIES
    De Luca, Claudio
    Roa, Yenni Lorena Belen
    Bonano, Manuela
    Casu, Francesco
    Euillades, Pablo
    Euillades, Leonardo
    Franzese, Marianna
    Manunta, Michele
    Muhammad, Yasir
    Onorato, Giovanni
    Striano, Pasquale
    Zinno, Ivana
    Lanari, Riccardo
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1416 - 1419
  • [9] ANALYSIS OF THE SBAS-DInSAR DISPLACEMENT TIME-SERIES ACCURACIES RETRIEVED IN VOLCANIC AREAS THROUGH THE FIRST AND SECOND GENERATION SENSOR SAR DATA
    Manzo, M.
    Berardino, P.
    Bonano, M.
    Casu, F.
    Manunta, M.
    Pepe, A.
    Pepe, S.
    Sansosti, E.
    Solaro, G.
    Tizzani, P.
    Zeni, G.
    Guglielmino, F.
    Puglisi, G.
    De Martino, P.
    Obrizzo, F.
    Tammaro, U.
    Lanari, R.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 141 - 144
  • [10] Large-Scale Land Subsidence Monitoring and Prediction Based on SBAS-InSAR Technology with Time-Series Sentinel-1A Satellite Data
    Guo, Hengliang
    Yuan, Yonghao
    Wang, Jinyang
    Cui, Jian
    Zhang, Dujuan
    Zhang, Rongrong
    Cao, Qiaozhuoran
    Li, Jin
    Dai, Wenhao
    Bao, Haoming
    Qiao, Baojin
    Zhao, Shan
    REMOTE SENSING, 2023, 15 (11)