Central limit theorems for LS estimators in the EV regression model with dependent measurements

被引:9
|
作者
Miao, Yu [1 ]
Zhao, Fangfang [1 ]
Wang, Ke [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan Province, Peoples R China
基金
中国国家自然科学基金;
关键词
EV model; Asymptotic normality; LS estimator; m-dependent; Martingale differences; phi-mixing; rho-mixing; alpha-mixing; ASYMPTOTIC PROPERTIES; SUMS;
D O I
10.1016/j.jkss.2010.12.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the simple linear errors-in-variables (EV) regression models: eta(i) = theta + beta x(i) + epsilon(i), xi(i) = x(i) + delta(i), 1 <= i <= n, where theta, beta, x(1), x(2), ... are unknown constants (Parameters), (epsilon(1), delta(1)), (epsilon(2), delta(2)), ... are errors and xi(i), eta(i), i = 1, 2, ... are observable. The asymptotic normality for the least square (LS) estimators of the unknown parameters beta and theta in the model are established under the assumptions that the errors are m-dependent, martingale differences, phi-mixing, rho-mixing and alpha-mixing. (C) 2010 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 50 条
  • [1] Central limit theorems for LS estimators in the EV regression model with dependent measurements
    Yu Miao
    Fangfang Zhao
    Ke Wang
    [J]. Journal of the Korean Statistical Society, 2011, 40 : 303 - 312
  • [2] Asymptotic for LS Estimators in the EV Regression Model for Dependent Errors
    Furmanczyk, Konrad
    [J]. FILOMAT, 2017, 31 (15) : 4845 - 4856
  • [3] Asymptotic properties for LS estimators in EV regression model with dependent errors
    Guo-Liang Fan
    Han-Ying Liang
    Jiang-Feng Wang
    Hong-Xia Xu
    [J]. AStA Advances in Statistical Analysis, 2010, 94 : 89 - 103
  • [4] Asymptotic properties for LS estimators in EV regression model with dependent errors
    Fan, Guo-Liang
    Liang, Han-Ying
    Wang, Jiang-Feng
    Xu, Hong-Xia
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2010, 94 (01) : 89 - 103
  • [5] Consistency of LS estimators in the EV regression model with martingale difference errors
    Miao, Yu
    Wang, Yanling
    Zheng, Haojiang
    [J]. STATISTICS, 2015, 49 (01) : 104 - 118
  • [6] Strong and weak consistency of LS estimators in the EV regression model with negatively superadditive-dependent errors
    Wang, Xuejun
    Wu, Yi
    Hu, Shuhe
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2018, 102 (01) : 41 - 65
  • [7] Strong and weak consistency of LS estimators in the EV regression model with negatively superadditive-dependent errors
    Xuejun Wang
    Yi Wu
    Shuhe Hu
    [J]. AStA Advances in Statistical Analysis, 2018, 102 : 41 - 65
  • [8] The central limit theorem for LS estimator in simple linear EV regression models
    Miao, Yu
    Yang, Guangyu
    Shen, Luming
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) : 2263 - 2272
  • [9] Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors
    Yu Miao
    Fangfang Zhao
    Ke Wang
    Yanping Chen
    [J]. Statistical Papers, 2013, 54 : 193 - 206
  • [10] Asymptotic Normality of LS Estimators in the Simple Linear EV Regression Model with PA Errors
    Yang, Qinglong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (23) : 4276 - 4284