Learning how to extract rotation-invariant and scale-invariant features from texture images

被引:16
|
作者
Montoya-Zegarra, Javier A. [1 ,2 ]
Paulo Papa, Joao [2 ]
Leite, Neucimar J. [2 ]
da Silva Torres, Ricardo [2 ]
Falcao, Alexandre X. [2 ]
机构
[1] San Pablo Catholic Univ, Fac Engn, Dept Comp Engn, Vallecito, Arequipa, Peru
[2] Univ Estadual Campinas, Inst Comp, BR-13083970 Campinas, SP, Brazil
关键词
D O I
10.1155/2008/691924
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Learning how to extract texture features from noncontrolled environments characterized by distorted images is a still-open task. By using a new rotation-invariant and scale-invariant image descriptor based on steerable pyramid decomposition, and a novel multiclass recognition method based on optimum-path forest, a new texture recognition system is proposed. By combining the discriminating power of our image descriptor and classifier, our system uses small-size feature vectors to characterize texture images without compromising overall classification rates. State-of-the-art recognition results are further presented on the Brodatz data set. High classification rates demonstrate the superiority of the proposed system. Copyright (c) 2008 Javier A. Montoya-Zegarra et al.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Learning How to Extract Rotation-Invariant and Scale-Invariant Features from Texture Images
    Javier A. Montoya-Zegarra
    João Paulo Papa
    Neucimar J. Leite
    Ricardo da Silva Torres
    Alexandre Falcão
    [J]. EURASIP Journal on Advances in Signal Processing, 2008
  • [2] Rotation-invariant and scale-invariant Gabor features for texture image retrieval
    Han, Ju
    Ma, Kai-Kuang
    [J]. IMAGE AND VISION COMPUTING, 2007, 25 (09) : 1474 - 1481
  • [3] Rotation-invariant and scale-invariant steerable pyramid decomposition for texture image retrieval
    Montoya-Zegarra, Javier A.
    Leite, Neucimar J.
    Torres, Ricardo da S.
    [J]. PROCEEDINGS OF THE XX BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, 2007, : 121 - +
  • [4] Position-invariant, rotation-invariant, and scale-invariant process for binary image recognition
    Levkovitz, J
    Oron, E
    Tur, M
    [J]. APPLIED OPTICS, 1997, 36 (14): : 3035 - 3042
  • [5] Rotation-invariant features for texture image classification
    Jalil, A.
    Qureshi, I. M.
    Manzar, A.
    Zahoor, R. A.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF INTELLIGENT SYSTEMS, 2006, : 42 - +
  • [6] Texture Classification Using Rotation- and Scale-Invariant Gabor Texture Features
    Riaz, Farhan
    Hassan, Ali
    Rehman, Saad
    Qamar, Usman
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (06) : 607 - 610
  • [7] Rotation-invariant texture features from the steered Hermite transform
    Estudillo-Romero, Alfonso
    Escalante-Ramirez, Boris
    [J]. PATTERN RECOGNITION LETTERS, 2011, 32 (16) : 2150 - 2162
  • [8] AN ALGORITHM FOR SCALE-INVARIANT AND ROTATION-INVARIANT RECOGNITION OF TWO-DIMENSIONAL OBJECTS
    MERO, L
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1981, 15 (03): : 279 - 287
  • [9] NEURAL NETWORKS - TRANSLATION-INVARIANT, ROTATION-INVARIANT, AND SCALE-INVARIANT PATTERN-RECOGNITION
    DOTSENKO, VS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (15): : L783 - L787
  • [10] Rotation-invariant texture recognition
    Montoya-Zegarra, Javier A.
    Papa, Joao P.
    Leite, Neucimar J.
    Torres, Ricardo da Silva
    Falcao, Alexandre X.
    [J]. ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, PT 2, 2007, 4842 : 193 - +