Quadratic complexity of binary sequences

被引:1
|
作者
Penzhorn, WT [1 ]
机构
[1] Ciphertec CC, ZA-0102 Pretoria, South Africa
关键词
D O I
10.1109/COMSIG.1998.736944
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The linear complexity of a binary sequences is an important attribute in applications such as secure communications [8][6]. In this article we introduce the concept of quadratic complexity of a binary sequences. It is shown that this complexity measure is closely linked to the theory of primitive Reed-Muller codes. Making use of the parity-check polynomial h(x) of a Reed-Muller code, a new algorithm for the computation of the quadratic complexity profile of a sequence is developed. Experimental results confirm the close resemble between expected theoretical and practical behaviour.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [1] On the quadratic span of binary sequences
    Rizomiliotis, P
    Kolokotronis, N
    Kalouptsidis, N
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (05) : 1840 - 1848
  • [2] On the quadratic span of binary sequences
    Rizomiliotis, P
    Kolokotronis, N
    Kalouptsidis, N
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 377 - 377
  • [3] Quadriphase sequences obtained from binary quadratic form sequences
    Tang, XH
    Udaya, P
    Fan, PZ
    SEQUENCES AND THEIR APPLICATIONS - SETA 2004, 2005, 3486 : 243 - 254
  • [4] BINARY SEQUENCES .1. COMPLEXITY
    PAPENTIN, F
    INFORMATION SCIENCES, 1983, 31 (01) : 1 - 14
  • [5] COMPLEXITY OSCILLATIONS IN INFINITE BINARY SEQUENCES
    MARTINLOF, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 19 (03): : 225 - +
  • [6] A complexity measure for families of binary sequences
    Rudolf Ahlswede
    Levon H. Khachatrian
    C. Mauduit
    A. Sárközy
    Periodica Mathematica Hungarica, 2003, 46 (2) : 107 - 118
  • [8] The linear complexity of a class of binary sequences with period
    Zhang, Jingwei
    Zhao, Chang-An
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2015, 26 (05) : 475 - 491
  • [9] Linear complexity of binary sequences with interleaved structure
    Xiong, Hai
    Qu, Longjiang
    Li, Chao
    Fu, Shaojing
    IET COMMUNICATIONS, 2013, 7 (15) : 1688 - 1696
  • [10] The Linear Complexity of Binary Sequences with Optimal Autocorrelation
    Wang, Qi
    Du, Xiaoni
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1228 - 1232