TuRF: Fast Data Collection for Fingerprint-based Indoor Localization

被引:0
|
作者
Li, Chenhe [1 ]
Xu, Qiang [1 ]
Gong, Zhe [1 ]
Zheng, Rong [1 ]
机构
[1] McMaster Univ, Dept Comp & Software, Hamilton, ON, Canada
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many infrastructure-free indoor positioning systems rely on fine-grained location-dependent fingerprints to train models for localization. The site survey process to collect fingerprints is laborious and is considered one of the major obstacles to deploying such systems. In this paper, we propose trajectory radio fingerprint (TuRF), a fast path-based fingerprint collection mechanism for site survey. We demonstrate the feasibility to collect fingerprints for indoor localization during walking along predefined paths. A step counter is utilized to accommodate the variations in walking speed. Approximate location labels inferred from the steps are then used to train a Gaussian Process regression model. Extensive experiments show that TuRF can significantly reduce the required time for site survey, without compromising the localization performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] ILOS: A Data Collection Tool and Open Datasets for Fingerprint-based Indoor Localization
    Cooke, Mitchell
    Wei, Yongyong
    Hao, Yujiao
    Zheng, Rong
    PROCEEDINGS OF THE FIRST WORKSHOP ON DATA ACQUISITION TO ANALYSIS (DATA '18), 2018, : 15 - 16
  • [2] An Evaluation of Fingerprint-Based Indoor Localization Techniques
    Karabey, Isil
    Bayindir, Levent
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 2254 - 2257
  • [3] Performance Analysis of Fingerprint-Based Indoor Localization
    Yang, Lyuxiao
    Wu, Nan
    Xiong, Yifeng
    Yuan, Weijie
    Li, Bin
    Li, Yonghui
    Nallanathan, Arumugam
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 23803 - 23819
  • [4] Confidence interval estimation for fingerprint-based indoor localization
    Nabati, Mohammad
    Ghorashi, Seyed Ali
    Shahbazian, Reza
    AD HOC NETWORKS, 2022, 134
  • [5] An Advanced Fingerprint-based Indoor Localization Scheme for WSNs
    Wang, Xizhe
    Qiu, Jian
    Ye, Sheng
    Dai, Guojun
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 2164 - 2169
  • [6] Toward Practical Deployment of Fingerprint-Based Indoor Localization
    He, Suining
    Hu, Tianyang
    Chan, S. -H. Gary
    IEEE PERVASIVE COMPUTING, 2017, 16 (02) : 76 - 83
  • [7] An Adaptive Leverage Sampling Scheme for Fingerprint-based Indoor Localization
    Kang, Wentao
    Zheng, Haifeng
    Feng, Xinxin
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [8] TILoc: Improving the Robustness and Accuracy for Fingerprint-Based Indoor Localization
    Li, Hualiang
    Qian, Zhihong
    Tian, Chunsheng
    Wang, Xue
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (04) : 3053 - 3066
  • [9] Indoor Intelligent Fingerprint-Based Localization: Principles, Approaches and Challenges
    Zhu, Xiaoqiang
    Qu, Wenyu
    Qiu, Tie
    Zhao, Laiping
    Atiquzzaman, Mohammed
    Wu, Dapeng Oliver
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (04): : 2634 - 2657
  • [10] Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning Based Approach
    Zhou, Chengyi
    Liu, Junyu
    Sheng, Min
    Zheng, Yang
    Li, Jiandong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (06) : 5762 - 5774