Chebyshev-Legendre pseudo-spectral method for the generalised Burgers-Fisher equation

被引:34
|
作者
Zhao, Tinggang [1 ,2 ]
Li, Can [1 ]
Zang, Zilong [2 ]
Wu, Yujiang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Lanzhou City Univ, Sch Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Chebyshev-Legendre method; Pseudo-spectral method; Generalised Burgers-Fisher equation; Stability; Convergence; SPECTRAL VISCOSITY METHOD; NUMERICAL-SOLUTION; COLLOCATION METHOD; PETROV-GALERKIN; ALGORITHM;
D O I
10.1016/j.apm.2011.07.059
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider numerical approximation of generalised Burgers-Fisher equation using the pseudo-spectral method. For the time discretization we apply Crank-Nicolson /leapfrog scheme. The space discretization is based on Legendre Galerkin formulation while the Chebyshev-Gauss-Lobatto (CGL) nodes are used in practical computation, which is called "Chebyshev-Legendre" method. The stability and convergence are rigorously set up. Numerical experiments are presented to demonstrate the effectiveness of the method and to confirm the theoretical results. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1046 / 1056
页数:11
相关论文
共 50 条