Lyotropic phases reinforced by hydrogen bonding

被引:23
|
作者
Martin, SM [1 ]
Ward, MD [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/la050393l
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Amphiphilic guanidinium alkylbenzenesulfonates (GCnBS; n = number of carbons in the alkyl chain) exhibited lyotropic behavior in aqueous and organic solvents. The GCnBS compounds formed gel-like phases in certain cyclic organic solvents (e.g. p-xylene, cyclohexane) through the formation of swollen interdigitated lamellar phases reinforced by hydrogen bonding between the guanidinium ions and sulfonate moieties. This behavior was not observed for the homologous sodium alkylbenzenesulfonates, indicating that hydrogen bonding, mediated by the guanidinium (G) ion, was required for gel formation. Infrared spectroscopy unambiguously demonstrated the existence of the quasihexagonal hydrogen-bonded sheet typically adopted by G ions and the sulfonate groups in layered, solvent-free crystalline phases of the compounds, supporting lamellar structures in the gels. Small-angle X-ray scattering analysis of these gels revealed GCnBS lamellar phases with interlayer spacings (d) that increased with increasing temperature, consistent with increased absorption of solvent by the nonpolar regions of the gelator. At the lower gelator concentrations, the increase in d-spacing achieved at the higher temperatures exceeded the sum of the alkylbenzene chain lengths, suggesting either long-range interactions between the GS sheets or undulation stabilized lamellae, which have been reported in aqueous lamellar gels. The GCnBS compounds also formed lyotropic phases in water, but the phase behavior was more complex than that of the organogels. The rheology suggested gel-like behavior associated with entangled wormlike micelles at these higher concentrations. These lyotropic phases were reminiscent of crystalline layered and tubular architectures exhibited by various guanidinium organomonosulfonate compounds. These lyotropic phases expand the liquid crystal behavior observed for GS compounds beyond recently observed thermotropic smectic phases, adding to the portfolio of phase behavior exhibited by these materials.
引用
收藏
页码:5324 / 5331
页数:8
相关论文
共 50 条
  • [1] Compact phases of polymers with hydrogen bonding
    Trovato, A
    Ferkinghoff-Borg, J
    Jensen, MH
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [2] Porphyrin nanochannels reinforced by hydrogen bonding
    Ishizuka, Tomoya
    Sankar, Muniappan
    Yamada, Yusuke
    Fukuzumi, Shunichi
    Kojima, Takahiko
    CHEMICAL COMMUNICATIONS, 2012, 48 (52) : 6481 - 6483
  • [3] Hydrous phases and hydrogen bonding at high pressure
    Prewitt, CT
    Parise, JB
    HIGH-TEMPERATURE AND HIGH-PRESSURE CRYSTAL CHEMISTRY, 2000, 41 : 309 - 333
  • [4] MAGNETIC LYOTROPIC PHASES
    DABADIE, JC
    FABRE, P
    VEYSSIE, M
    CABUIL, V
    MASSART, R
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 : SA291 - SA294
  • [5] LYOTROPIC LAMELLAR PHASES
    HELFRICH, W
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 : A79 - A92
  • [6] Wide nematic phases induced by hydrogen-bonding
    Ahmed, H. A.
    Hagar, M.
    Alaasar, M.
    Naoum, M.
    LIQUID CRYSTALS, 2019, 46 (04) : 550 - 559
  • [7] SOME ASPECTS OF HYDROGEN-BONDING IN THE PHASES OF WATER
    WHALLEY, E
    KLUG, DD
    HANDA, YP
    SVENSSON, EC
    ROOT, JH
    SEARS, VF
    JOURNAL OF MOLECULAR STRUCTURE, 1991, 250 (2-4) : 337 - 349
  • [8] RHEOLOGY OF LYOTROPIC LAMELLAR PHASES
    ROUX, D
    NALLET, F
    DIAT, O
    EUROPHYSICS LETTERS, 1993, 24 (01): : 53 - 58
  • [9] Lyotropic phases of diphytanoyl phosphatidylcholine
    Harroun, T
    He, K
    Heller, WT
    Ludtke, SJ
    Huang, H
    Hsieh, CH
    Wu, W
    BIOPHYSICAL JOURNAL, 1996, 70 (02) : SU321 - SU321
  • [10] Effect of flow on lyotropic phases
    Roux, D
    THEORETICAL CHALLENGES IN THE DYNAMICS OF COMPLEX FLUIDS, 1997, 339 : 203 - 233