Analysis of Fuzzy with Neuro-Fuzzy Approach to Self-Tune Database System

被引:0
|
作者
Karanam, Kriti [1 ]
Rodd, S. F. [2 ]
机构
[1] Ramrao Adik Inst Technol, Dept Comp Engn, Navi Mumbai, Maharashtra, India
[2] Gogte Inst Technol, Dept Informat Sci & Engn, Belgaum, Karnataka, India
关键词
DBMS; DBA; Self-tuning; Fuzzy Logic; Neural Network; Neuro-Fuzzy Control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Database Management system (DBMS) and other system software are used to store and retrieve large amounts of data in a structured way. The modern applications are generally data intensive and involve frequent storage of data and rapid access to them. To drive such applications and to support highly dynamic user load, the database system needs to be tuned systematically. To tune the database system, the database administrator (DBA) has to continuously monitor the DBMS and several other system parameters so as to enhance the performance of the system, and also ensure proper utilization of system resources. The manual tuning is not only tedious, but it may also result in system instability due to over or under-tuning of system parameters. Hence, the trend in modern database systems is to implement self-tuning mechanisms to relieve the DBA of the tedious task. The control architecture proposed is based on the Fuzzy Logic and Neural Networks. The proposed method has been validated under TPC-C workload and has shown significant improvement in performance. The comparison is also made between Fuzzy tuning and Neural network-Fuzzy tuning. With a self-tuning system in place, results have improved performance, with Neuro-Fuzzy Approach.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Neuro-fuzzy system for clustering of video database
    Manori, M
    Maheshwari, M
    Belawat, K
    Jain, S
    Chande, PK
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 965 - 970
  • [2] A self-learning neuro-fuzzy system
    DeClaris, N
    Su, MC
    HYBRID SYSTEMS II, 1995, 999 : 106 - 127
  • [3] A neuro-fuzzy approach for robot system safety
    Zurada, J
    Wright, AL
    Graham, JH
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2001, 31 (01): : 49 - 64
  • [4] An adaptive neuro-fuzzy approach for system modeling
    Ouyang, CS
    Lee, WJ
    Lee, SJ
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 1875 - 1880
  • [5] Neuro-fuzzy approach to gear system monitoring
    Wang, W
    Ismail, F
    Golnaraghi, F
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (05) : 710 - 723
  • [6] Neuro-Fuzzy Approach to Explosion Consequence Analysis
    Tyagi, Lakshya
    Singhal, Abhishek
    PROCEEDINGS OF THE CONFLUENCE 2020: 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING, 2020, : 315 - 319
  • [7] Self-Organizing Neuro-Fuzzy Inference System
    Allende-Cid, Hector
    Veloz, Alejandro
    Salas, Rodrigo
    Chabert, Steren
    Allende, Hector
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2008, 5197 : 429 - +
  • [8] A neuro-fuzzy system for inferencing
    Pal, K
    Pal, NR
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1999, 14 (11) : 1155 - 1182
  • [9] Memristive Neuro-Fuzzy System
    Merrikh-Bayat, Farnood
    Shouraki, Saeed Bagheri
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (01) : 269 - 285
  • [10] A DENCLUE Based Approach to Neuro-Fuzzy System Modeling
    He, Jun
    Pan, Weimin
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 4, 2010, : 42 - 46