Protein structure prediction by AlphaFold2: are attention and symmetries all you need?

被引:33
|
作者
Bouatta, Nazim [1 ]
Sorger, Peter [1 ]
AlQuraishi, Mohammed [2 ]
机构
[1] Harvard Med Sch, Lab Syst Pharmacol, Boston, MA 02115 USA
[2] Columbia Univ, Dept Syst Biol, New York, NY 10032 USA
关键词
AlphaFold2; protein structure prediction; CASP14; MOLECULAR-DYNAMICS SIMULATIONS; PATHWAYS;
D O I
10.1107/S2059798321007531
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The functions of most proteins result from their 3D structures, but determining their structures experimentally remains a challenge, despite steady advances in crystallography, NMR and single-particle cryoEM. Computationally predicting the structure of a protein from its primary sequence has long been a grand challenge in bioinformatics, intimately connected with understanding protein chemistry and dynamics. Recent advances in deep learning, combined with the availability of genomic data for inferring co-evolutionary patterns, provide a new approach to protein structure prediction that is complementary to longstanding physics-based approaches. The outstanding performance of AlphaFold2 in the recent Critical Assessment of protein Structure Prediction (CASP14) experiment demonstrates the remarkable power of deep learning in structure prediction. In this perspective, we focus on the key features of AlphaFold2, including its use of (i) attention mechanisms and Transformers to capture long-range dependencies, (ii) symmetry principles to facilitate reasoning over protein structures in three dimensions and (iii) end-to-end differentiability as a unifying framework for learning from protein data. The rules of protein folding are ultimately encoded in the physical principles that underpin it; to conclude, the implications of having a powerful computational model for structure prediction that does not explicitly rely on those principles are discussed.
引用
收藏
页码:982 / 991
页数:10
相关论文
共 50 条
  • [1] Advancing protein structure prediction beyond AlphaFold2
    Park, Sanggeun
    Myung, Sojung
    Baek, Minkyung
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2025, 90
  • [2] Before and after AlphaFold2: An overview of protein structure prediction
    Bertoline, Leticia M. F.
    Lima, Angelica N.
    Krieger, Jose E.
    Teixeira, Samantha K.
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [3] AlphaFold2 protein structure prediction: Implications for drug discovery
    Borkakoti, Neera
    Thornton, Janet M.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 78
  • [4] Benchmarking AlphaFold2 on peptide structure prediction
    McDonald, Eli Fritz
    Jones, Taylor
    Plate, Lars
    Meiler, Jens
    Gulsevin, Alican
    STRUCTURE, 2023, 31 (01) : 111 - +
  • [5] Grain Protein Function Prediction Based on CNN and Residual Attention Mechanism with AlphaFold2 Structure Data
    Liu, Jing
    Zhang, Xinping
    Huang, Kai
    Wei, Yuqi
    Guan, Xiao
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [6] AlphaFold2: A Role for Disordered Protein/Region Prediction?
    Wilson, Carter J.
    Choy, Wing-Yiu
    Karttunen, Mikko
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [7] Improved prediction of protein-protein interactions using AlphaFold2
    Patrick Bryant
    Gabriele Pozzati
    Arne Elofsson
    Nature Communications, 13
  • [8] Unsupervisedly Prompting AlphaFold2 for Accurate Few-Shot Protein Structure Prediction
    Zhang, Jun
    Liu, Sirui
    Chen, Mengyun
    Chu, Haotian
    Wang, Min
    Wang, Zidong
    Yu, Jialiang
    Ni, Ningxi
    Yu, Fan
    Chen, Dechin
    Yang, Yi Isaac
    Xue, Boxin
    Yang, Lijiang
    Liu, Yuan
    Gao, Yi Qin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (22) : 8460 - 8471
  • [9] Improved prediction of protein-protein interactions using AlphaFold2
    Bryant, P.
    Pozzati, G.
    Elofsson, A.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] Ins and outs of AlphaFold2 transmembrane protein structure predictions
    Hegedus, Tamas
    Geisler, Markus
    Lukacs, Gergely Laszlo
    Farkas, Bianka
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2022, 79 (01)