Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride

被引:82
|
作者
Chen, Chunlin [1 ]
Wang, Zhongchang [1 ]
Kato, Takeharu [2 ]
Shibata, Naoya [3 ]
Taniguchi, Takashi [4 ]
Ikuhara, Yuichi [1 ,2 ,3 ]
机构
[1] Tohoku Univ, Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
[2] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan
[3] Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan
[4] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
CHEMICAL-VAPOR-DEPOSITION; METAL-METAL INTERFACES; HETEROEPITAXIAL GROWTH; DISLOCATIONS; FILM; SEMICONDUCTOR; DISSOCIATION; INSULATOR; EPITAXY; STATE;
D O I
10.1038/ncomms7327
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diamond and cubic boron nitride (c-BN) are the top two hardest materials on the Earth. Clarifying how the two seemingly incompressible materials can actually join represents one of the most challenging issues in materials science. Here we apply the temperature gradient method to grow the c-BN single crystals on diamond and report a successful epitaxial growth. By transmission electron microscopy, we reveal a novel misfit accommodation mechanism for a {111} diamond/c-BN heterointerface, that is, lattice misfit can be accommodated by continuous stacking fault networks, which are connected by periodically arranged hexagonal dislocation loops. The loops are found to comprise six 60 degrees Shockley partial dislocations. Atomically, the carbon in diamond bonds directly to boron in c-BN at the interface, which electronically induces a two-dimensional electron gas and a quasi-1D electrical conductivity. Our findings point to the existence of a novel misfit accommodation mechanism associated with the superhard materials.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride
    Chunlin Chen
    Zhongchang Wang
    Takeharu Kato
    Naoya Shibata
    Takashi Taniguchi
    Yuichi Ikuhara
    Nature Communications, 6
  • [2] Heteroepitaxy of diamond on cubic boron nitride
    Koizumi, S
    ISRAEL JOURNAL OF CHEMISTRY, 1998, 38 (1-2) : 33 - 40
  • [3] Mechanism for diamond growth on hydrogenated {111} surfaces of cubic boron nitride
    Yanagihara, T
    Yomogita, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (9A): : 5229 - 5234
  • [4] Mechanism for diamond growth on hydrogenated {111} surfaces of cubic boron nitride
    Yanagihara, Takashi
    Yomogita, Kazuo
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2000, 39 (9 A): : 5229 - 5234
  • [5] Deposition mechanism of diamond-like carbon and cubic boron nitride
    Robertson, J
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 1997, 142 (1-4): : 63 - 90
  • [6] ON CRYSTALLIZATION OF CUBIC BORON NITRIDE AND OF SYNTHETIC DIAMOND
    BEZRUKOV, GN
    BUTUZOV, VP
    NIKITINA, TP
    FELDGUN, LI
    FILONENK.NE
    KHATELIS.GV
    DOKLADY AKADEMII NAUK SSSR, 1968, 179 (06): : 1326 - &
  • [7] Ionoluminescence in CVD diamond and in cubic boron nitride
    Manfredotti, C
    Vittone, E
    Lo Giudice, A
    Paolini, C
    Fizzotti, F
    Dinca, G
    Ralchenko, V
    Nistor, SV
    DIAMOND AND RELATED MATERIALS, 2001, 10 (3-7) : 568 - 573
  • [8] CUBIC BORON-NITRIDE DIAMOND FILMS
    LIAO, KJ
    WANG, WL
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1994, 145 (01): : K25 - K27
  • [9] Submicron cubic boron nitride as hard as diamond
    Liu, Guoduan
    Kou, Zili
    Yan, Xiaozhi
    Lei, Li
    Peng, Fang
    Wang, Qiming
    Wang, Kaixue
    Wang, Pei
    Li, Liang
    Li, Yong
    Li, Wentao
    Wang, Yonghua
    Bi, Yan
    Leng, Yang
    He, Duanwei
    APPLIED PHYSICS LETTERS, 2015, 106 (12)
  • [10] Lattice thermal transport in superhard hexagonal diamond and wurtzite boron nitride: A comparative study with cubic diamond and cubic boron nitride
    Chakraborty, Pranay
    Xiong, Guoping
    Cao, Lei
    Wang, Yan
    CARBON, 2018, 139 : 85 - 93