Deep learning magnetic resonance imaging radiomics for predicting disease-free survival in patients with early-stage invasive breast cancer

被引:0
|
作者
He, Z. [1 ]
Yu, Y. [1 ]
Ren, W. [1 ]
Mao, L. [1 ]
Tan, Y. [1 ]
Wang, J. [2 ]
Hu, Q. [3 ]
Ouyang, Y. [4 ]
Xie, C. [5 ]
Yao, H. [1 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Affiliated Hospital 2, Dept Med Oncol, Guangzhou, Guangdong, Peoples R China
[2] Cells Vis Guangzhou Med Technol Inc, Guangzhou, Guangdong, Peoples R China
[3] Southern Med Univ, Shunde Hosp, Dept Radiol, Foshan, Peoples R China
[4] Sun Yat Sen Univ, Tungwah Hosp, Dept Breast Surg, Dongguan, Peoples R China
[5] Sun Yat Sen Univ, Imaging Diagnost & Intervent Ctr, Canc Ctr, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.annonc.2021.08.411
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
130P
引用
收藏
页码:S415 / S415
页数:1
相关论文
共 50 条
  • [1] Machine learning intratumoral and peritumoral magnetic resonance imaging radiomics for predicting disease-free survival in patients with early-stage breast cancer (RBC-01 Study)
    Ren, W.
    Yu, Y.
    Tan, Y.
    Chen, Y.
    Liu, J.
    He, Z.
    Li, A.
    Ma, J.
    Lu, N.
    Li, C.
    Li, X.
    Ou, Q.
    Chen, K.
    Hu, Q.
    Ouyang, J.
    Su, F.
    Xie, C.
    Song, E.
    Yao, H.
    ANNALS OF ONCOLOGY, 2020, 31 : S1244 - S1244
  • [2] Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer
    Park, Hyunjin
    Lim, Yaeji
    Ko, Eun Sook
    Cho, Hwan-ho
    Lee, Jeong Eon
    Han, Boo-Kyung
    Ko, Eun Young
    Choi, Ji Soo
    Park, Ko Woon
    CLINICAL CANCER RESEARCH, 2018, 24 (19) : 4705 - 4714
  • [3] Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer
    Yan Zhou
    Hai-Lei Gu
    Xin-Lu Zhang
    Zhong-Fu Tian
    Xiao-Quan Xu
    Wen-Wei Tang
    European Radiology, 2022, 32 : 2540 - 2551
  • [4] Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer
    Zhou, Yan
    Gu, Hai-Lei
    Zhang, Xin-Lu
    Tian, Zhong-Fu
    Xu, Xiao-Quan
    Tang, Wen-Wei
    EUROPEAN RADIOLOGY, 2022, 32 (04) : 2540 - 2551
  • [5] Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer
    Yu, Yunfang
    Tan, Yujie
    Xie, Chuanmiao
    Hu, Qiugen
    Ouyang, Jie
    Chen, Yongjian
    Gu, Yang
    Li, Anlin
    Lu, Nian
    He, Zifan
    Yang, Yaping
    Chen, Kai
    Ma, Jiafan
    Li, Chenchen
    Ma, Mudi
    Li, Xiaohong
    Zhang, Rong
    Zhong, Haitao
    Ou, Qiyun
    Zhang, Yiwen
    He, Yufang
    Li, Gang
    Wu, Zhuo
    Su, Fengxi
    Song, Erwei
    Yao, Herui
    JAMA NETWORK OPEN, 2020, 3 (12) : E2028086
  • [6] Ultrasound-Based Radiomics Analysis for Predicting Disease-Free Survival of Invasive Breast Cancer
    Xiong, Lang
    Chen, Haolin
    Tang, Xiaofeng
    Chen, Biyun
    Jiang, Xinhua
    Liu, Lizhi
    Feng, Yanqiu
    Liu, Longzhong
    Li, Li
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [7] MRI radiomics combined with clinicopathologic features to predict disease-free survival in patients with early-stage cervical cancer
    Jiang, Xiaoting
    Song, Jiacheng
    Duan, Shaofeng
    Cheng, Wenjun
    Chen, Ting
    Liu, Xisheng
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1136):
  • [8] Predicting Invasive Disease-Free Survival for Early Stage Breast Cancer Patients Using Follow-Up Clinical Data
    Fu, Bo
    Liu, Pei
    Lin, Jie
    Deng, Ling
    Hu, Kejia
    Zheng, Hong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (07) : 2053 - 2064
  • [9] Radiomics model of 18F-FDG PET/CT imaging for predicting disease-free survival of early-stage uterine cervical squamous cancer
    Liu, Shuai
    Li, Ruikun
    Liu, Qiufang
    Sun, Dazheng
    Yang, Hongxing
    Pan, Herong
    Wang, Lisheng
    Song, Shaoli
    CANCER BIOMARKERS, 2022, 33 (02) : 249 - 259
  • [10] Magnetic resonance imaging radiomics predicts high and low recurrence risk and is associated with LncRNAs in early-stage invasive breast cancer
    Ren, W.
    Yu, Y.
    He, Z.
    Mao, L.
    Chen, Y.
    Ouyang, W.
    Tan, Y.
    Li, C.
    Chen, K.
    Ouyang, J.
    Hu, Q.
    Xie, C.
    Yao, H.
    ANNALS OF ONCOLOGY, 2021, 32 : S417 - S417