Dehydration of Ca3Al2(SiO4)y(OH)4(3-y) (0<y<0.176) studied by neutron thermodiffractometry

被引:40
|
作者
Rivas-Mercury, J. M. [2 ]
Pena, P. [1 ]
de Aza, A. H. [1 ]
Turrillas, X. [3 ,4 ]
机构
[1] CSIC, Inst Ceram & Vidrio, E-28049 Madrid, Spain
[2] Ctr Fed Educao Tecnol Maranhao, BR-65025001 Sao Luis, MA, Brazil
[3] CSIC, E Torroja Inst Construct Sci IETcc, Madrid 28033, Spain
[4] European Synchrotron Radiat Facil, F-38043 Grenoble, France
关键词
thermal treatment; neutron powder diffraction; X-ray methods; thermal expansion; calcium aluminates; refractories;
D O I
10.1016/j.jeurceramsoc.2007.12.038
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogarnet (Ca12Al2(OH)(12)) and katoite of composition Ca3Al2(SiO4)(0.176)(OH)(11.3) were obtained by hydration of tricalcium aluminium oxide, and for katoite synthesis, by addition of amorphous silica. The thermal dehydration was monitored in situ, by neutron thermodiffractometry, from room temperature to 700 degrees C at atmospheric pressure and at a heating rate of 2 degrees C/min. On heating, powder neutron diffraction patterns were collected every 300 s. Cell parameters were fitted by the Pawley method. Hydrogarnet decomposed to yield Ca12Al14O32 (OH)-mH(2)O and Ca(OH)(2) that eventually transformed to CaO. For katoite, phases of formula Ca12Al14-ySiyO32(O,OH)(1+y/2) related to mayenite were formed. Complementary annealing experiments, for 10 h, at higher temperatures and subsequent quenching lead to the formation of mayenite and traces of Ca3SiO5. Thermogravimetric curves were in agreement with the thermodiffractometry experiments. Also, neutron diffraction data allowed to measure thermal expansion coefficients, at atmospheric pressure, between 25 and 250 degrees C for hydrogarnet and katoite: 1.89 x 10(-5) +/- 0.09 and 1.63 x 10(-5) +/- 0.07 degrees C-1, respectively. (C) 2008 Published by Elsevier Ltd.
引用
收藏
页码:1737 / 1748
页数:12
相关论文
共 50 条
  • [1] Synthesis and characterization of hydrogarnet Ca3(AlXFe1- X)2(SiO4)y(OH)4(3-y)
    Dilnesa, Belay Zeleke
    Lothenbach, Barbara
    Renaudin, Guillaume
    Wichser, Adrian
    Kulik, Dmitrii
    CEMENT AND CONCRETE RESEARCH, 2014, 59 : 96 - 111
  • [2] Ca3Y2(SiO4)(3)
    Yamane, H
    Nagasawa, T
    Shimada, M
    Endo, T
    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1997, 53 : 1367 - 1369
  • [3] Electronic structure of Ni3AlXy (X = B, C, H; 0<y<1)
    Hase, Izumi
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2007, 71 (06) : 508 - 510
  • [4] Sr1-xCexFe1-yCoyO3-δ (x≤0.15, 0<y<1) solid solutions
    Vashuk, VV
    Ol'shevskaya, OP
    Savchenko, VF
    Kokhanovskii, LV
    Strukova, OV
    Lukashevich, VE
    INORGANIC MATERIALS, 2000, 36 (11) : 1173 - 1177
  • [5] Structural, magnetic, electrochemical and hydrogen absorption properties of GdyMg2-yNi4-xAlx compounds with 0.4<y<2 and 0<x<1.2
    Roquefere, Jean-Gabriel
    Chevalier, Bernard
    Poettgen, Rainer
    Terashita, Naoyoshi
    Asano, Kohta
    Akiba, Etsuo
    Bobet, Jean-Louis
    INTERMETALLICS, 2008, 16 (02) : 179 - 187
  • [6] Tunable photoluminescence properties of Sr1-yCayMoO4:Sm3+ phosphors (0≤y<1)
    Cao, Renping
    Chen, Kangbin
    Liu, Pan
    Cao, Chunyan
    Xu, Yongchun
    Ao, Hui
    Tang, Pengjie
    LUMINESCENCE, 2015, 30 (07) : 962 - 966
  • [7] Structure of the mixed oxides La0.6Pb0.4Mn1-yTiyO3±z (0<y<0.4) via Rietveld refinements
    Nalini, G
    Sahana, M
    Hegde, MS
    Row, TNG
    MATERIALS RESEARCH BULLETIN, 2001, 36 (1-2) : 307 - 314
  • [8] THE CRYSTAL-STRUCTURE OF KULIOKITE-(Y) - A NEW Y-AL-SILICATE, Y4AL[SIO4]2(OH)2F5
    SOKOLOVA, EV
    EGOROVTISMENKO, IK
    VOLOSHIN, AV
    PAKHOMOVSKII, JA
    DOKLADY AKADEMII NAUK SSSR, 1986, 289 (06): : 1378 - 1382
  • [9] The atomic arrangement of iimoriite-(Y), Y-2(SiO4)(CO3)
    Hughes, JM
    Foord, EE
    JaiNhuknan, J
    Bell, JM
    CANADIAN MINERALOGIST, 1996, 34 : 817 - 820
  • [10] NUCLEAR MAGNETIC RESONANCE OF 27AL IN GARNET GROSSULARITE CA3AL2(SIO4)3
    DERIGHETTI, B
    GHOSE, S
    PHYSICS LETTERS A, 1969, A 28 (07) : 523 - +