Operator Segal algebras in Fourier algebras

被引:11
|
作者
Forrest, Brian E. [1 ]
Spronk, Nico [1 ]
Wood, Peter J. [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
关键词
Fourier algebra; Segal algebra; operator (weak) amenabilty;
D O I
10.4064/sm179-3-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact group, A(G) its Fourier algebra and L-1 (G) the space of Haar integrable functions on G. We study the Segal algebra S(1)A(G) = A(G) boolean AND L-1(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of S(1)A(G). We use it to show that the restriction operator u vertical bar -> u vertical bar(H) : S(1)A(G) -> A(H), for some non-open closed subgroups H, is a surjective complete quotient map. We also show that if N is a non-compact closed subgroup, then the averaging operator tau(N) : S(1)A(G) -> L-1(G/N), tau(N)u(sN) = integral(N) u(sn) dn, is a surjective complete quotient map. This puts an operator space perspective on the philosophy that S(1)A(G) is "locally A(G) while globally L-1". Also, using the operator space structure we can show that S1A(G) is operator amenable exactly when when G is compact; and we can show that it is always operator weakly amenable. To obtain the latter fact, we use E. Samei's theory of hyper-Tauberian Banach algebras.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 50 条
  • [1] Segal extensions and Segal algebras in uniform Banach algebras
    Subhash J. Bhatt
    Prakash A. Dabhi
    [J]. Indian Journal of Pure and Applied Mathematics, 2021, 52 : 162 - 167
  • [2] Segal extensions and Segal algebras in uniform Banach algebras
    Bhatt, Subhash J.
    Dabhi, Prakash A.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01): : 162 - 167
  • [3] SEGAL ALGEBRAS AND ABSTRACT SEGAL ALGEBRAS - PRELIMINARY-REPORT
    HO, TJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A14 - A14
  • [4] SEGAL ALGEBRAS IN COMMUTATIVE BANACH ALGEBRAS
    Inoue, Jyunji
    Takahasi, Sin-Ei
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (02) : 539 - 589
  • [5] SOME BEURLING-FOURIER ALGEBRAS ON COMPACT GROUPS ARE OPERATOR ALGEBRAS
    Ghandehari, Mahya
    Lee, Hun Hee
    Samei, Ebrahim
    Spronk, Nico
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 7029 - 7059
  • [6] DOUBLE ALGEBRAS, SEGAL ALGEBRAS, AND ANNIHILATOR ALGEBRAS .1.
    WILDFOGE.DJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A9 - A9
  • [7] Approximate amenability of semigroup algebras and Segal algebras
    Dales, H. G.
    Loy, R. J.
    [J]. DISSERTATIONES MATHEMATICAE, 2010, (474) : 5 - +
  • [8] ISOMORPHISMS OF SOME SEGAL ALGEBRAS AND THEIR MULTIPLIER ALGEBRAS
    TEWARI, UB
    PARTHASARATHY, K
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1982, 25 (03) : 441 - 451
  • [10] An extension of Segal algebras
    Yousofzadeh, Akram
    [J]. MATEMATIKA, 2016, 32 : 75 - 79