On Distribution of Superconductivity in Metal Hydrides

被引:137
|
作者
Semenok, Dmitrii, V [1 ]
Kruglov, Ivan A. [2 ,3 ]
Savkin, Igor A. [4 ]
Kvashnin, Alexander G. [1 ,2 ]
Oganov, Artem R. [1 ,2 ,5 ]
机构
[1] Skolkovo Inst Sci & Technol, Skolkovo Innovat Ctr, 3 Nobel St, Moscow 121205, Russia
[2] Moscow Inst Phys & Technol, 9 Inst Sky Lane, Dolgoprudnyi 141700, Russia
[3] Dukhov Res Inst Automat VNIIA, Moscow 127055, Russia
[4] Lomonosov Moscow State Univ, Res Comp Ctr, Moscow, Russia
[5] Northwestern Polytech Univ, Int Ctr Mat Discovery, Xian 710072, Peoples R China
来源
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
USPEX; High-pressure; Superconducting hydrides; Periodic Table; DFT; Evolutionary algorithm; Neural network; HIGH-TEMPERATURE SUPERCONDUCTIVITY; INITIO MOLECULAR-DYNAMICS; POLYHYDRIDES; PREDICTION; TRANSITION; LANTHANUM;
D O I
10.1016/j.cossms.2020.100808
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the data on the superconducting critical temperature (T-C) for a number of metal hydrides, we found a rule that makes it possible to predict the maximum T-C based only on the information about the electronic structure of metal atoms. Using this guiding principle, we explored the hydride systems for which no reliable information existed, predicted new higher hydrides in the K-H, Zr-H, Hf-H, Ti-H, Mg-H, Sr-H, Ba-H, Cs-H, and Rb-H systems at high pressures, and calculated their T-C. The highest-temperature superconducting hydrides are formed by metals in the "lability belt" roughly between 2nd and 3rd groups of the Periodic Table. Results of the study of actinoids and lanthanoids show that they form highly symmetric superhydrides XH7-XH9, but the increasing number of d- and especially f-electrons affects superconducitivity adversely. Hydrides of late transition metals (e.g. platinoids) and all but early lanthanoids and actinoids are not promising for high-Tc superconductivity. Designed neural network allowing the prediction of T-C of various hydrides shows high accuracy and was used to estimate upper limit for T-C of hydrides for which no date are avilable. The developed rule, based on regular behavior of the maximum achievable critical temperature as a function of number of d + f electrons, enables targeted predictions about the existence of new high-T-C superconductors.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Superconductivity of light-metal hydrides
    Lv, Hai-Yan
    Chen, Ming
    Feng, Ye
    Li, Wen-Jie
    Zhong, Guo-Hua
    Yang, Chun-Lei
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2019, 66 (10) : 1246 - 1256
  • [2] Superconductivity in alkaline earth metal doped boron hydrides
    Yang, Wen-Hua
    Lu, Wen-Cai
    Li, Shan-Dong
    Xue, Xu-Yan
    Qin, Wei
    Ho, K. M.
    Wang, C. Z.
    PHYSICA B-CONDENSED MATTER, 2021, 611
  • [3] SUPERCONDUCTIVITY IN PALLADIUM-SIMPLE METAL-HYDRIDES
    FRIEDBERG, CB
    REX, AF
    RUVALDS, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 503 - 503
  • [4] THEORY OF SUPERCONDUCTIVITY IN PALLADIUM NOBLE-METAL HYDRIDES
    LAUFER, PM
    PAPACONSTANTOPOULOS, DA
    PHYSICAL REVIEW B, 1986, 33 (07): : 5134 - 5137
  • [5] Superconductivity in alkaline earth metal doped boron hydrides
    Yang, Wen-Hua
    Lu, Wen-Cai
    Li, Shan-Dong
    Xue, Xu-Yan
    Qin, Wei
    Ho, K.M.
    Wang, C.Z.
    Physica B: Condensed Matter, 2021, 611
  • [6] SUPERCONDUCTIVITY IN THE METASTABLE PHASES OF TRANSITION-METAL HYDRIDES
    GALBAATAR, T
    PLAKIDA, NM
    DRECHSLER, SL
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 77 (03): : 387 - 392
  • [7] ANHARMONICITY AND SUPERCONDUCTIVITY IN METAL-HYDRIDES .1. FORMULATION
    GANGULY, BN
    PHYSICAL REVIEW B, 1976, 14 (09) : 3848 - 3852
  • [8] Metal Carbides & hydrides : Structure and Superconductivity under high pressure
    Ahuja, R.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2014, 70 : C1535 - C1535
  • [9] SUPERCONDUCTIVITY IN PDALX HYDRIDES
    FRIEDBERG, CB
    PICKEL, JS
    REX, AF
    RUVALDS, J
    SOLID STATE COMMUNICATIONS, 1979, 29 (05) : 407 - 410
  • [10] SUPERCONDUCTIVITY OF TECHNETIUM HYDRIDES
    ANTONOV, VY
    BELASH, IT
    BUKOV, KG
    ZHARIKOV, OV
    PALNICHENKO, AV
    TEPLINSKIY, VM
    FIZIKA METALLOV I METALLOVEDENIE, 1989, 68 (06): : 1198 - 1200