Reinforcement learning in real-time geometry assurance

被引:5
|
作者
Jorge, Emilio [1 ]
Brynte, Lucas [1 ]
Cronrath, Constantin [2 ]
Wigstrom, Oskar [2 ]
Bengtsson, Kristofer [2 ]
Gustaysson, Emil [1 ]
Lennartson, Bengt [2 ]
Jirstrand, Mats [1 ]
机构
[1] Fraunhofer Chalmers Ctr Ind Math, SE-41288 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Elect Engn, SE-41296 Gothenburg, Sweden
关键词
geometry assurance; reinforcement learning; expert advice;
D O I
10.1016/j.procir.2018.03.168
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To improve the assembly quality during production, expert systems are often used. These experts typically use a system model as a basis for identifying improvements. However, since a model uses approximate dynamics or imperfect parameters, the expert advice is bound to be biased. This paper presents a reinforcement learning agent that can identify and limit systematic errors of an expert systems used for geometry assurance. By observing the resulting assembly quality over time, and understanding how different decisions affect the quality, the agent learns when and how to override the biased advice from the expert software. (C) 2018 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of the 51st CIRP Conference on Manufacturing Systems.
引用
收藏
页码:1073 / 1078
页数:6
相关论文
共 50 条
  • [1] Real-Time Reinforcement Learning
    Ramstedt, Simon
    Pal, Christopher
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Benchmarking Real-Time Reinforcement Learning
    Thodoroff, Pierre
    Li, Wenyu
    Lawrence, Neil D.
    [J]. NEURIPS 2021 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 181, 2021, 181 : 26 - 41
  • [3] Real-Time IDS Using Reinforcement Learning
    Sagha, Hesam
    Shouraki, Saeed Bagheri
    Khasteh, Hosein
    Dehghani, Mahdi
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 593 - +
  • [4] Real-time optimization using reinforcement learning
    Powell, By Kody M.
    Machalek, Derek
    Quah, Titus
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2020, 143 (143)
  • [5] Toward a Digital Twin for real-time geometry assurance in individualized production
    Soderberg, Rikard
    Warmefjord, Kristina
    Carlson, Johan S.
    Lindkvist, Lars
    [J]. CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2017, 66 (01) : 137 - 140
  • [6] Real-time model calibration with deep reinforcement learning
    Tian, Yuan
    Chao, Manuel Arias
    Kulkarni, Chetan
    Goebel, Kai
    Fink, Olga
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [7] Experience Replay for Real-Time Reinforcement Learning Control
    Adam, Sander
    Busoniu, Lucian
    Babuska, Robert
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2012, 42 (02): : 201 - 212
  • [8] Real-Time Bidding by Reinforcement Learning in Display Advertising
    Cai, Han
    Ren, Kan
    Zhang, Weinan
    Malialis, Kleanthis
    Wang, Jun
    Yu, Yong
    Guo, Defeng
    [J]. WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2017, : 661 - 670
  • [9] Real-Time Lane Configuration with Coordinated Reinforcement Learning
    Gunarathna, Udesh
    Xie, Hairuo
    Tanin, Egemen
    Karunasekara, Shanika
    Borovica-Gajic, Renata
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE TRACK, ECML PKDD 2020, PT IV, 2021, 12460 : 291 - 307
  • [10] Reinforcement Learning Based on Real-Time Iteration NMPC
    Zanon, Mario
    Kungurtsev, Vyacheslav
    Gros, Sebastien
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 5213 - 5218