The projected GSURE for automatic parameter tuning in iterative shrinkage methods

被引:84
|
作者
Giryes, R. [1 ]
Elad, M. [1 ]
Eldar, Y. C. [2 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
Iterated shrinkage; Stein unbiased risk estimator; Separable surrogate function; Inverse problems; L-CURVE; WAVELET; ALGORITHM; SURE; GCV;
D O I
10.1016/j.acha.2010.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear inverse problems are very common in signal and image processing. Many algorithms that aim at solving such problems include unknown parameters that need tuning. In this work we focus on optimally selecting such parameters in iterative shrinkage methods for image deblurring and image zooming. Our work uses the projected Generalized Stein Unbiased Risk Estimator (GSURE) for determining the threshold value lambda and the iterations number K in these algorithms. The proposed parameter selection is shown to handle any degradation operator, including ill-posed and even rectangular ones. This is achieved by using GSURE on the projected expected error. We further propose an efficient greedy parameter setting scheme, that tunes the parameter while iterating without impairing the resulting deblurring performance. Finally, we provide extensive comparisons to conventional methods for parameter selection, showing the superiority of the use of the projected GSURE. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:407 / 422
页数:16
相关论文
共 50 条
  • [1] AUTOMATIC PARAMETER SETTING FOR ITERATIVE SHRINKAGE METHODS
    Giryes, Raja
    Elad, Michael
    Eldar, Yonina C.
    [J]. 2008 IEEE 25TH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, VOLS 1 AND 2, 2008, : 800 - +
  • [2] A Survey of Automatic Parameter Tuning Methods for Metaheuristics
    Huang, Changwu
    Li, Yuanxiang
    Yao, Xin
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 201 - 216
  • [3] Automatic parameter tuning for functional regionalization methods
    Manuel Casado-Diaz, Jose
    Martinez-Bernabeu, Lucas
    Florez-Revuelta, Francisco
    [J]. PAPERS IN REGIONAL SCIENCE, 2017, 96 (04) : 859 - +
  • [4] Automatic Tuning of a Mechanical Design Parameter of a Robotic Leg by Iterative Learning Mechatronics
    Jung, Joonyoung
    Choi, Jungsu
    Na, Byeonghun
    Kong, Kyoungchul
    [J]. 2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 88 - 92
  • [5] Convergence of regularization methods with filter functions for a regularization parameter chosen with GSURE
    Sixou, B.
    [J]. 9TH INTERNATIONAL CONFERENCE ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, NCMIP 2019, 2020, 1476
  • [6] Controller Parameter Tuning of a Hexacopter with Fictitious Reference Iterative Tuning
    Latt, Zaw Ko Ko
    Si, Hnin
    Kaneko, Osamu
    [J]. PROCEEDINGS OF 2019 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS (SICE ISCS 2019), 2019, : 96 - 101
  • [7] Shrinkage tuning parameter selection with a diverging number of parameters
    Wang, Hansheng
    Li, Bo
    Leng, Chenlei
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 671 - 683
  • [8] Document binarization with automatic parameter tuning
    Nicholas R. Howe
    [J]. International Journal on Document Analysis and Recognition (IJDAR), 2013, 16 : 247 - 258
  • [9] Shrinkage tuning parameter selection in precision matrices estimation
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (08) : 2839 - 2848
  • [10] Document binarization with automatic parameter tuning
    Howe, Nicholas R.
    [J]. INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2013, 16 (03) : 247 - 258