2D Semantic Segmentation of the Prostate Gland in Magnetic Resonance Images using Convolutional Neural Networks

被引:1
|
作者
Vacacela, Silvia P. [1 ]
Benalcazar, Marco E. [1 ]
机构
[1] Escuela Politec Nacl, Artificial Intelligence & Comp Vis Res Lab, Dept Comp Sci & Informat, Quito, Ecuador
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 15期
关键词
Convolutional Neural Networks; Prostate Segmentation; Central Gland; Peripheral Zone; MRIs; Encoder-Decoder; U-net; Encoder-Classifier; VGG16; NCI-ISBI; 2013;
D O I
10.1016/j.ifacol.2021.10.288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Networks is one of the most commonly used methods for automatic prostate segmentation. However, few studies focus on the segmentation of the two main zones of the prostate: the central gland and the peripheral zone. This work proposes and evaluates two models for 2D semantic segmentation of these two zones of the prostate. The first model (Model-A) uses an encoder-decoder architecture based on the global U-net and the local U-net architectures. The global U-net segments the whole prostate, whereas the local U-net segments the central gland. The peripheral zone is obtained by subtracting the central gland from the whole prostate. On the other hand, the second model (Model-B) uses an encoder-classifier architecture based on the VGG16 network. Model-B performs segmentation by classifying each pixel of a Magnetic Resonance Image (MRI) into three categories: background, central gland, and peripheral zone. Both models are tested using MRIs from the dataset NCI-ISBI 2013 Challenge. The experimental results show a superior segmentation performance for Model-A, encoder-decoder architecture, (DSC = 96.79% +/- 0.15% and IoU = 93.79% +/- 0.29%) compared to Model-B, encoder-classifier architecture, (DSC = 92.50% +/- 1.19% and IoU = 86.13% +/- 2.02%). Copyright (C) 2021 The Authors.
引用
收藏
页码:394 / 399
页数:6
相关论文
共 50 条
  • [1] Wall segmentation in 2D images using convolutional neural networks
    Bjekic, Mihailo
    Lazovic, Ana
    Venkatachalam, K.
    Bacanin, Nebojsa
    Zivkovic, Miodrag
    Kvascev, Goran
    Nikolic, Bosko
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9
  • [2] Semantic Segmentation of Cerebellum in 2D Fetal Ultrasound Brain Images Using Convolutional Neural Networks
    Singh, Vishal
    Sridar, Pradeeba
    Kim, Jinman
    Nanan, Ralph
    Poornima, N.
    Priya, Shanmuga
    Reddy, G. Sameera
    Chandrasekaran, Sathyabama
    Krishnakumar, Ramarathnam
    [J]. IEEE ACCESS, 2021, 9 : 85864 - 85873
  • [3] Efficient 3D Semantic Segmentation of Seismic Images using Orthogonal Planes 2D Convolutional Neural Networks
    Guazzelli, Arthur Bridi
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [4] Convolutional Neural Networks for Prostate Magnetic Resonance Image Segmentation
    Hassanzadeh, Tahereh
    Hamey, Leonard G. C.
    Ho-Shon, Kevin
    [J]. IEEE ACCESS, 2019, 7 : 36748 - 36760
  • [5] Myocardial segmentation in cardiac magnetic resonance images using fully convolutional neural networks
    Romaguera, Liset Vazquez
    Romero, Francisco Perdigon
    Fernandes Costa Filho, Cicero Ferreira
    Fernandes Costa, Marly Guimaraes
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 44 : 48 - 57
  • [6] Semantic Segmentation of Marine Radar Images using Convolutional Neural Networks
    Kim, Keunhwan
    Kim, Jinwhan
    [J]. OCEANS 2019 - MARSEILLE, 2019,
  • [7] Semantic segmentation of satellite images of airports using convolutional neural networks
    Gorbachev, V. A.
    Krivorotov, I. A.
    Markelov, A. O.
    Kotlyarova, E., V
    [J]. COMPUTER OPTICS, 2020, 44 (04) : 636 - +
  • [8] Simultaneous brain structure segmentation in magnetic resonance images using deep convolutional neural networks
    Maruyama, Tomoko
    Hayashi, Norio
    Sato, Yusuke
    Ogura, Toshihiro
    Uehara, Masumi
    Ogura, Akio
    Watanabe, Haruyuki
    Kitoh, Yoshihiro
    [J]. RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2021, 14 (04) : 358 - 365
  • [9] Simultaneous brain structure segmentation in magnetic resonance images using deep convolutional neural networks
    Tomoko Maruyama
    Norio Hayashi
    Yusuke Sato
    Toshihiro Ogura
    Masumi Uehara
    Akio Ogura
    Haruyuki Watanabe
    Yoshihiro Kitoh
    [J]. Radiological Physics and Technology, 2021, 14 : 358 - 365
  • [10] Semantic segmentation on small datasets of satellite images using convolutional neural networks
    Younis, Mohammed Chachan
    Keedwell, Edward
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)