AN EXTENSION OF THE LEVY CHARACTERIZATION TO FRACTIONAL BROWNIAN MOTION

被引:4
|
作者
Mishura, Yuliya [1 ]
Valkeila, Esko [2 ]
机构
[1] Kiev Univ, Dept Math, UA-01033 Kiev, Ukraine
[2] Aalto Univ, Dept Math & Syst Anal, FI-00076 Aalto, Finland
来源
ANNALS OF PROBABILITY | 2011年 / 39卷 / 02期
关键词
Fractional Brownian motion; Levy theorem;
D O I
10.1214/10-AOP555
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assume that X is a continuous square integrable process with zero mean, defined on some probability space (Omega, F, P). The classical characterization due to P. Levy says that X is a Brownian motion if and only if X and X-t(2) - t, t >= 0, are martingales with respect to the intrinsic filtration F-X. We extend this result to fractional Brownian motion.
引用
收藏
页码:439 / 470
页数:32
相关论文
共 50 条
  • [1] GENERALIZED FRACTIONAL LEVY PROCESSES WITH FRACTIONAL BROWNIAN MOTION LIMIT
    Klueppelberg, Claudia
    Matsui, Muneya
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (04) : 1108 - 1131
  • [2] Is network traffic approximated by stable Levy motion or fractional Brownian motion?
    Mikosch, T
    Resnick, S
    Rootzén, H
    Stegeman, A
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (01): : 23 - 68
  • [3] A Poisson bridge between fractional Brownian motion and stable Levy motion
    Gaigalas, R
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (03) : 447 - 462
  • [4] Fuzzy Fractional Brownian Motion: Review and Extension
    Urumov, Georgy
    Chountas, Panagiotis
    Chaussalet, Thierry
    ALGORITHMS, 2024, 17 (07)
  • [5] AN EXTENSION OF SUB-FRACTIONAL BROWNIAN MOTION
    Sghir, Aissa
    PUBLICACIONS MATEMATIQUES, 2013, 57 (02) : 497 - 508
  • [6] Rectified Brownian transport in corrugated channels: Fractional Brownian motion and Levy flights
    Ai, Bao-quan
    Shao, Zhi-gang
    Zhong, Wei-rong
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (17):
  • [7] FRACTIONAL MARTINGALES AND CHARACTERIZATION OF THE FRACTIONAL BROWNIAN MOTION
    Hu, Yaozhong
    Nualart, David
    Song, Jian
    ANNALS OF PROBABILITY, 2009, 37 (06): : 2404 - 2430
  • [8] THE SCHOENBERG-LEVY KERNEL AND RELATIONSHIPS AMONG FRACTIONAL BROWNIAN MOTION, BIFRACTIONAL BROWNIAN MOTION, AND OTHERS
    Ma, C.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2013, 57 (04) : 619 - 632
  • [9] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [10] EXTENSION OF A LEVY,PAUL FORMULA FOR THE QUADRATIC VARIATION OF PLANAR BROWNIAN-MOTION
    DONATIMARTIN, C
    YOR, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 1992, 116 (03): : 353 - 382