Soft-sensing modeling based on multi-phases for fermentation process

被引:0
|
作者
Yang, Qiangda [1 ]
Wang, Fuli [1 ]
Chang, Yuqing [1 ]
机构
[1] NW Univ 131, Minist Educ, Key Lab Proc Ind Automat, Shenyang 110004, Peoples R China
关键词
phase identification; fuzzy c-means clustering; neural network; soft sensing; fermentation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the process of Nosiheptied fermentation, a new method for soft-sensing modeling by phases is presented. By using the state equations established for the Nosiheptied fermentation process, the secondary variables are determined according to the inverse system theory. Then, fuzzy c-means clustering algorithm and neural network are used for phase identification, and for each phase, a local neural network model for soft sensing is developed Finally, the estimation is implemented by computing the sum of outputs of the developed local models weighted by the cot-responding degrees of membership from the phase identification. The testing result shows the effectiveness of the approach to the development of the soft-sensing model.
引用
收藏
页码:358 / +
页数:2
相关论文
共 50 条
  • [1] Soft-sensing Modeling Based on PSO-FNN Inversion for Penicillin Fermentation Process
    Wang, Bo
    Ji, Xiao F.
    Zhuang, Zhi K.
    IAEDS15: INTERNATIONAL CONFERENCE IN APPLIED ENGINEERING AND MANAGEMENT, 2015, 46 : 1333 - 1338
  • [2] Soft-sensing Modeling Method Based On Continuous Hidden Markov Model For Microbial Fermentation Process
    Liu, Guohai
    Jiang, Xingke
    Mei, Congli
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 1106 - 1110
  • [3] Soft-sensing modeling of marine protease fermentation process based on improved PSO-RBFNN
    Zhu X.
    Ling J.
    Wang B.
    Hao J.
    Ding Y.
    Huagong Xuebao/CIESC Journal, 2018, 69 (03): : 1221 - 1227
  • [4] Soft-sensing modeling of crucial parameters for penicillinfed-batch fermentation process
    Wang, B.
    Ji, X. F.
    Sun, Y. K.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2015, 47 (04): : 1204 - 1210
  • [5] Modern Soft-Sensing Modeling Methods for Fermentation Processes
    Zhu, Xianglin
    Rehman, Khalil Ur
    Wang, Bo
    Shahzad, Muhammad
    SENSORS, 2020, 20 (06)
  • [6] Soft-sensing modeling of a fermentation process through support vector machines and genetic algorithms
    Sang, Hai-Feng
    He, Da-Kuo
    Zhang, Da-Peng
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2007, 28 (06): : 781 - 784
  • [7] Soft-sensing method for L-lysine fermentation process based on FDLS-SVM
    Sun, Yukun
    Wang, Bo
    Huang, Yonghong
    Ji, Xiaofu
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2010, 31 (02): : 404 - 409
  • [8] Soft-sensing method based on FDLS-SVM in marine alkaline protease fermentation process
    Wang, Bo
    Yu, Meifang
    Zhu, Xianglin
    Jiang, Zheyu
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2019, 49 (08): : 783 - 789
  • [9] On-line Soft-sensing of Germ Concentration for Fermentation Process of Glutamic Acid
    Wang Guicheng
    Chen Cen
    Pang Yujun
    Zhao Yuanyuan
    Wang Yong
    Zhang Zhansheng
    Xu Xinhe
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL II, PROCEEDINGS, 2009, : 118 - +
  • [10] ANN inversion based soft-sensing of biochemical parameters in erythromycin fermentation
    Dai, XZ
    Yu, DC
    Ding, YH
    Wang, WC
    ICIA 2004: Proceedings of 2004 International Conference on Information Acquisition, 2004, : 262 - 266