Robust automated polyp detection for low-dose and normal-dose virtual colonoscopy

被引:2
|
作者
Peters, JF [1 ]
Grigorescu, SE [1 ]
Truyen, R [1 ]
Gerritsen, FA [1 ]
de Vries, AH [1 ]
van Gelder, RE [1 ]
Rogalla, P [1 ]
机构
[1] Philips Med Syst, Med IT Adv Dev, Best, Netherlands
关键词
computer aided detection; CT colonography; virtual colonoscopy;
D O I
10.1016/j.ics.2005.03.192
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We evaluated the performance of an automated polyp-detection scheme on both low-dose and normal-dose virtual colonoscopy data from different institutions. The polyp-detection algorithm is statistically trained on low-dose virtual colonoscopy data from 13 patients with a predicted sensitivity of 92% and a false-positive rate of 9 objects per study. An independent test on data from 50 patients with similar preparation and acquisition as the training data and 32 patients having completely different preparation and acquisition confirms the prediction. Our results show that it is possible to design a sensitive and specific polyp-detector that is robust for low-dose and normal-dose, isotropic and anisotropic, for faecal-tagged and non-tagged CT colonoscopy data. (c) 2005 CARS & Elsevier B.V. All rights reserved.
引用
收藏
页码:1146 / 1150
页数:5
相关论文
共 50 条
  • [1] A comparison of low-dose and normal-dose gadobutrol in MR renography and renal angiography
    Bayrak, Ilkay Koray
    Ozmen, Zafer
    Nural, Mehmet Selim
    Danaci, Murat
    Diren, Baris
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2008, 9 (03) : 250 - 257
  • [2] Low-dose computed tomography image restoration using previous normal-dose scan
    Ma, Jianhua
    Huang, Jing
    Feng, Qianjin
    Zhang, Hua
    Lu, Hongbing
    Liang, Zhengrong
    Chen, Wufan
    [J]. MEDICAL PHYSICS, 2011, 38 (10) : 5713 - 5731
  • [3] Low-dose CT reconstruction method based on prior information of normal-dose image
    Chen, Zixiang
    Zhang, Qiyang
    Zhou, Chao
    Zhang, Mengxi
    Yang, Yongfeng
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    Hu, Zhanli
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (06) : 1091 - 1111
  • [4] Dataset on renal tumor diameter assessment by multiple observers in normal-dose and low-dose CT
    Borgbjerg, Jens
    Larsen, Nis Elbrond
    Salte, Ivar Mjaland
    Gronli, Niklas Revold
    Klaestrup, Elise
    Negard, Anne
    [J]. DATA IN BRIEF, 2023, 51
  • [5] Low-dose CT colonography in colorectal polyp detection
    Macari, M
    Bini, E
    Milano, A
    Katz, S
    Resnick, D
    Megibow, AJ
    [J]. RADIOLOGY, 2001, 221 : 403 - 403
  • [6] Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images
    Han, H.
    Xing, L.
    Liang, Z.
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3702 - 3702
  • [7] Can Deep Learning Raise the Quality of Low-Dose CT Images Above That of Normal-Dose CT Images?
    Bai, T.
    Nguyen, D.
    Wang, G.
    Jiang, S.
    [J]. MEDICAL PHYSICS, 2020, 47 (06) : E585 - E585
  • [8] Virtual colonoscopy screening with ultra low-dose CT: A simulation study
    Wang, Jing
    Wang, Su
    Li, Lihong
    Lu, Hongbing
    Liang, Zhengrong
    [J]. 2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 4564 - +
  • [9] A Meta-Analysis of the Literature about Pulmonary Nodules Computer-Aided-Detection by Comparing CT Low-Dose Protocols and CT Normal-Dose Protocols
    Saba, L.
    Mallarini, G.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2007, 188 (05)
  • [10] Prospective randomised comparison of diagnostic confidence and image quality with normal-dose and low-dose CT pulmonary angiography at various body weights
    Szucs-Farkas, Zsolt
    Megyeri, Boglarka
    Christe, Andreas
    Vock, Peter
    Heverhagen, Johannes T.
    Schindera, Sebastian T.
    [J]. EUROPEAN RADIOLOGY, 2014, 24 (08) : 1868 - 1877