Dimension reduction for compressible Navier-Stokes equations with density-dependent viscosity

被引:0
|
作者
Zhang, Mingyu [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang, Peoples R China
关键词
Compressible Navier-Stokes equations; Dimension reduction; Relative entropy; SUITABLE WEAK SOLUTIONS; BOUNDARY-VALUE-PROBLEMS; STRONG UNIQUENESS; EXISTENCE;
D O I
10.1186/s13660-020-02405-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Navier-Stokes equations describing the motion of a compressible viscous fluid confined to a thin domain omega epsilon=I epsilon x(0,1)}=I_{\varepsilon }\times (0, 1)$\end{document}, I epsilon=(0,epsilon)subset of R=(0, \varepsilon )\subset \mathbb{R}$\end{document}. We show that the strong solutions in the 2D domain converge to the classical solutions of the limit 1D Navier-Stokes system as epsilon -> 0.d
引用
下载
收藏
页数:16
相关论文
共 50 条