Evolutionary Multiobjective Optimization With Robustness Enhancement

被引:44
|
作者
He, Zhenan [1 ]
Yen, Gary G. [2 ]
Lv, Jiancheng [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74075 USA
基金
中国国家自然科学基金;
关键词
Optimization; Uncertainty; Robustness; Evolutionary computation; Perturbation methods; Aircraft; Safety; Evolutionary algorithms (EAs); multiobjective optimization; robust optimization; uncertainty; ALGORITHM; FRAMEWORK; DESIGN;
D O I
10.1109/TEVC.2019.2933444
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Uncertainty is an important feature abstracted from real-world applications. Multiobjective optimization problems (MOPs) with uncertainty can always be characterized as robust MOPs (RMOPs). Over recent years, multiobjective optimization evolutionary algorithms (EAs) have demonstrated the success in solving MOPs. However, most of them do not consider disturbance in the design. In order to handling the uncertainty in the optimization problem, we first give a thorough analysis of three important issues on robust optimization. Then, a novel EA called multiobjective optimization EA with robustness enhancement is developed, where the seamless integration of robustness and optimality is achieved by a proposed novel archive updating mechanism applied on the evolutionary process as well as the new robust optimal front building strategy designed to construct the final robust optimal front. Furthermore, the new designed archive updating mechanism makes the robust optimization process free of the enormous computational workload induced from sampling. The experimental results on a set of benchmark functions show the superiority of the proposed design in terms of both solutions' quality under the disturbance and computational efficiency in solving RMOPs.
引用
下载
收藏
页码:494 / 507
页数:14
相关论文
共 50 条
  • [1] A Computationally Efficient Evolutionary Algorithm for Multiobjective Network Robustness Optimization
    Wang, Shuai
    Liu, Jing
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (03) : 419 - 432
  • [2] A staged diversity enhancement method for constrained multiobjective evolutionary optimization
    Yu, Fan
    Chen, Qun
    Zhou, Jinlong
    Li, Yange
    INFORMATION SCIENCES, 2024, 680
  • [3] Evolutionary Multiobjective Optimization
    Yen, Gary G.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (03) : 2 - 2
  • [4] Evolutionary multiobjective optimization
    Coello Coello, Carlos A.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (05) : 444 - 447
  • [5] A Novel Edge Rewire Mechanism Based on Multiobjective Optimization for Network Robustness Enhancement
    Li, Zhaoxing
    Liu, Qionghai
    Chen, Li
    FRONTIERS IN PHYSICS, 2021, 9 (09):
  • [6] Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization
    Nojima, Yusuke
    Tanigaki, Yuki
    Masuyama, Naoki
    Ishibuchi, Hisao
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 745 - 750
  • [7] Evolutionary multiobjective optimization on a chip
    Bonissone, Stefano
    Subbu, Raj
    2007 IEEE WORKSHOP ON EVOLVABLE AND ADAPTIVE HARDWARE, 2007, : 61 - +
  • [8] Evolutionary Multiobjective Optimization and Uncertainty
    Branke, Juergen
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 2 - 2
  • [9] Tutorial on Evolutionary Multiobjective Optimization
    Brockhoff, Dimo
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 461 - 484
  • [10] Introduction to Evolutionary Multiobjective Optimization
    Deb, Kalyanmoy
    MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 59 - 96