General Optimal Polynomial Approximants, Stabilization, and Projections of Unity

被引:0
|
作者
Felder, Christopher [1 ]
机构
[1] Washington Univ St Louis, Dept Math & Stat, St Louis, MO 63136 USA
来源
ANALYSIS IN THEORY AND APPLICATIONS | 2022年
关键词
Optimal polynomial approximants; inner functions; CYCLICITY; SPACES;
D O I
10.4208/ata.OA-2020-0047xxx202x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In various Hilbert spaces of analytic functions on the unit disk, we characterize when a function has optimal polynomial approximants given by truncations of a single power series or, equivalently, when the approximants stabilize. We also introduce a generalized notion of optimal approximant and use this to explicitly compute orthogonal projections of 1 onto certain shift invariant subspaces.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Optimal Polynomial Approximants in Lp
    Centner, Raymond
    CONCRETE OPERATORS, 2022, 9 (01): : 96 - 113
  • [2] Zeros of optimal polynomial approximants in lpA
    Cheng, Raymond
    Ross, William T.
    Seco, Daniel
    ADVANCES IN MATHEMATICS, 2022, 404
  • [3] Boundary Behavior of Optimal Polynomial Approximants
    Catherine Bénéteau
    Myrto Manolaki
    Daniel Seco
    Constructive Approximation, 2021, 54 : 157 - 183
  • [4] Boundary Behavior of Optimal Polynomial Approximants
    Beneteau, Catherine
    Manolaki, Myrto
    Seco, Daniel
    CONSTRUCTIVE APPROXIMATION, 2021, 54 (01) : 157 - 183
  • [5] MORE PROPERTIES OF OPTIMAL POLYNOMIAL APPROXIMANTS IN HARDY SPACES
    Cheng, Raymond
    Felder, Christopher
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 327 (02) : 267 - 295
  • [6] HiPPO: Recurrent Memory with Optimal Polynomial Projections
    Gu, Albert
    Dao, Tri
    Ermon, Stefano
    Rudra, Atri
    Re, Christopher
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [7] Simultaneous zero-free approximation and universal optimal polynomial approximants
    Beneteau, Catherine
    Ivrii, Oleg
    Manolaki, Myrto
    Seco, Daniel
    JOURNAL OF APPROXIMATION THEORY, 2020, 256
  • [8] Zeros of optimal polynomial approximants: Jacobi matrices and Jentzsch-type theorems
    Beneteau, Catherine
    Khavinson, Dmitry
    Liaw, Constanze
    Seco, Daniel
    Simanek, Brian
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (02) : 607 - 642
  • [9] POLYNOMIAL TYPE PADE APPROXIMANTS
    NEMETH, G
    ZIMANYI, M
    MATHEMATICS OF COMPUTATION, 1982, 38 (158) : 553 - 565
  • [10] On the global polynomial stabilization and observation with optimal decay rate
    Jammazi, Chaker
    Boutayeb, Mohamed
    Bouamaied, Ghada
    CHAOS SOLITONS & FRACTALS, 2021, 153