QIBA guidance: Computed tomography imaging for COVID-19 quantitative imaging applications

被引:10
|
作者
Avila, Ricardo S. [1 ]
Fain, Sean B. [2 ]
Hatt, Chuck [3 ,15 ]
Armato, Samuel G., III [4 ]
Mulshine, James L. [5 ]
Gierada, David [6 ]
Silva, Mario [7 ]
Lynch, David A. [8 ]
Hoffman, Eric A. [9 ]
Ranallo, Frank N. [2 ]
Mayo, John R. [10 ,16 ]
Yankelevitz, David [11 ]
Estepar, Raul San Jose [12 ,17 ]
Subramaniam, Raja [11 ]
Henschke, Claudia, I [11 ]
Guimaraes, Alex [13 ]
Sullivan, Daniel C. [14 ]
机构
[1] Accumetra LLC, Clifton Pk, NY 12065 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
[3] Imbio LLC, Minneapolis, MN USA
[4] Univ Chicago, Chicago, IL 60637 USA
[5] Rush Univ, Chicago, IL 60612 USA
[6] Washington Univ, St Louis, MO 14263 USA
[7] Univ Parma, Parma, Italy
[8] Natl Jewish Hlth, Denver, CO USA
[9] Univ Iowa, Iowa City, IA 52242 USA
[10] Vancouver Gen Hosp, Vancouver, BC, Canada
[11] Mt Sinai Hlth Syst, New York, NY USA
[12] Brigham & Womens Hosp, Boston, MA 02115 USA
[13] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[14] Duke Univ, Durham, NC 27706 USA
[15] Univ Michigan, Ann Arbor, MI 48109 USA
[16] Univ British Columbia, Vancouver, BC, Canada
[17] Harvard Med Sch, Boston, MA 02115 USA
关键词
COVID-19; Quantitative imaging; Artificial intelligence; Computed tomography; LUNG; PNEUMONIA; CT; SARS-COV-2;
D O I
10.1016/j.clinimag.2021.02.017
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
As the COVID-19 pandemic impacts global populations, computed tomography (CT) lung imaging is being used in many countries to help manage patient care as well as to rapidly identify potentially useful quantitative COVID-19 CT imaging biomarkers. Quantitative COVID-19 CT imaging applications, typically based on computer vision modeling and artificial intelligence algorithms, include the potential for better methods to assess COVID19 extent and severity, assist with differential diagnosis of COVID-19 versus other respiratory conditions, and predict disease trajectory. To help accelerate the development of robust quantitative imaging algorithms and tools, it is critical that CT imaging is obtained following best practices of the quantitative lung CT imaging community. Toward this end, the Radiological Society of North America's (RSNA) Quantitative Imaging Biomarkers Alliance (QIBA) CT Lung Density Profile Committee and CT Small Lung Nodule Profile Committee developed a set of best practices to guide clinical sites using quantitative imaging solutions and to accelerate the international development of quantitative CT algorithms for COVID-19. This guidance document provides quantitative CT lung imaging recommendations for COVID-19 CT imaging, including recommended CT image acquisition settings for contemporary CT scanners. Additional best practice guidance is provided on scientific publication reporting of quantitative CT imaging methods and the importance of contributing COVID-19 CT imaging datasets to open science research databases.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [1] Patterns of COVID-19 on computed tomography imaging
    Li, S. K.
    Ng, F. H.
    Ma, K. F.
    Luk, W. H.
    Lee, Y. C.
    Yung, K. S.
    HONG KONG MEDICAL JOURNAL, 2020, 26 (04) : 289 - 293
  • [2] Role of computed tomography imaging in identifying COVID-19 cases
    Wong, Samuel Y. S.
    Kwok, K. O.
    HONG KONG MEDICAL JOURNAL, 2020, 26 (03) : 167 - 168
  • [3] Prognostic implications of regional lung impairment evaluation in quantitative computed tomography imaging of COVID-19
    Seraphim, D. Molena
    Guassu, R. A. Camargo
    Alvarez, M.
    Mendes, M. Bannwart
    Tasca, K. I.
    Barbosa, A. Naime
    Vacavant, A.
    Fortaleza, C. M. Castelo Branco
    de Pina, D. Rodrigues
    CLINICAL RADIOLOGY, 2025, 81
  • [4] COVID-19: Histopathological correlates of imaging patterns on chest computed tomography
    Kianzad, Azar
    Meijboom, Lilian J.
    Nossent, Esther J.
    Roos, Eva
    Schurink, Bernadette
    Bonta, Peter I.
    van den Berk, Inge A. H.
    Britstra, Rieneke
    Stoker, Jaap
    Vonk Noordegraaf, Anton
    van Der Valk, Paul
    Thunnissen, Erik
    Bugiani, Marianna
    Bogaard, Harm Jan
    Radonic, Teodora
    RESPIROLOGY, 2021, 26 (09) : 869 - 877
  • [5] Correlation Between Quantitative Assessment of Chest Computed Tomography (CT) Imaging and Prognosis of COVID-19 Patients
    Liu, Rongrong
    Chen, Guangqiang
    Zhu, Yi
    Liu, Ling
    Tang, Wei
    Zhu, Jianbing
    Li, Min
    MEDICAL SCIENCE MONITOR, 2020, 26
  • [6] Quantitative analysis of image quality in low-dose computed tomography imaging for COVID-19 patients
    Ghane, Behrooz
    Karimian, Alireza
    Mostafapour, Samaneh
    Gholamiankhak, Faezeh
    Shojaerazavi, Seyedjafar
    Arabi, Hossein
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2023, 13 (02): : 118 - 128
  • [7] The need for standards for COVID-19 quantitative imaging analysis applications
    Zulueta, Javier J.
    CLINICAL IMAGING, 2021, 77 : 299 - 300
  • [8] COVID-19 S: A new proposal for diagnosis and structured reporting of COVID-19 on computed tomography imaging
    Gezer, Naciye Sinem
    Ergan, Begum
    Baris, Mustafa Mahmut
    Appak, Ozgur
    Sayiner, Ayca Arzu
    Balci, Pinar
    Kuruuzum, Ziya
    Cavus, Sema Alp
    Kilinc, Oguz
    DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2020, 26 (04) : 315 - 322
  • [9] Impact of easing COVID-19 safety measures on trauma computed tomography imaging volumes
    Sriram Rao
    Justin Glavis-Bloom
    David Kakish
    Karen Tran-Harding
    Daniel S. Chow
    Michael Nguyentat
    Eric O. Yeates
    Jeffry Nahmias
    Roozbeh Houshyar
    Emergency Radiology, 2023, 30 : 27 - 32
  • [10] Diagnostic Performance of Computed Tomography Imaging for COVID-19 in a Region with Low Disease Prevalence
    Lee, Ho
    Suzuki, Tatsuya
    Okada, Yohei
    Tanaka, Hiromu
    Okamori, Satoshi
    Kamata, Hirofumi
    Ishii, Makoto
    Jinzaki, Masahiro
    Fukunaga, Koichi
    KEIO JOURNAL OF MEDICINE, 2021, : 21 - 30