Higher spin sl2 R-matrix from equivariant (co)homology

被引:0
|
作者
Bykov, Dmitri [1 ,2 ,3 ]
Zinn-Justin, Paul [4 ]
机构
[1] Max Planck Intitut Phys, Fohringer Ring 6, D-80805 Munich, Germany
[2] Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
[3] Russian Acad Sci, Steklov Math Inst, Gubkina St 8, Moscow 119991, Russia
[4] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
R-matrix; Spin chain; Nakajima variety; Stable envelope; YANG-BAXTER EQUATION; QUIVER VARIETIES;
D O I
10.1007/s11005-020-01302-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the rational sl(2) R-matrix acting in the product of two spin-l(2) (l is an element of N) representations, using a method analogous to the one of Maulik and Okounkov, i.e., by studying the equivariant (co)homology of certain algebraic varieties. These varieties, first considered by Nekrasov and Shatashvili, are typically singular. They may be thought of as the higher spin generalizations of A1 Nakajima quiver varieties (i.e., cotangent bundles of Grassmannians), the latter corresponding to l = 1.
引用
收藏
页码:2435 / 2470
页数:36
相关论文
共 50 条