Photoluminescence and Raman Scattering in Arrays of Silicon Nanowires

被引:17
|
作者
Timoshenko, V. Yu. [1 ]
Gonchar, K. A. [1 ]
Golovan, L. A. [1 ]
Efimova, A. I. [1 ]
Sivakov, V. A. [2 ]
Dellith, A. [2 ]
Christiansen, S. H. [3 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
[2] Inst Photon Technol, D-07745 Jena, Germany
[3] Max Planck Inst Phys Lichts, D-91054 Erlangen, Germany
基金
俄罗斯基础研究基金会;
关键词
Silicon Nanowires; Raman Spectroscopy; Photoluminescence; Light Scattering; POROUS SILICON; SOLAR-CELLS; GROWTH; RECOMBINATION; NANOCRYSTALS; LUMINESCENCE;
D O I
10.1166/jno.2011.1205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Arrays of silicon (Si) nanowires with mean diameters of about 50-100 nm formed by wet-chemical etching of crystalline silicon wafers with low and high doping levels were investigated by means of photoluminescence and Raman spectroscopy. The photoluminescence bands in the spectral ranges of 650-900 nm and about 1100 nm were detected and explained by the radiative recombination of excitons confined in Si nanocrystals on the surface of Si nanowires and by the interband photoluminescence in the volume of Si nanowires, respectively. The intensities of the band-gap related photoluminescence and Raman scattering under excitation at 1064 nm were significantly larger for the Si nanowire samples in comparison with that for the crystalline Si substrates. This fact is explained by strong scattering of the excitation light, which results in partial light trapping in silicon nanowire arrays. The doping level and surface orientation of the substrate were found to influence the photoluminescence and Raman scattering in Si nanowire arrays.
引用
收藏
页码:519 / 524
页数:6
相关论文
共 50 条
  • [1] Photoluminescence and Raman scattering correlated study of boron-doped silicon nanowires
    Zeng, XB
    Liao, XB
    Dai, ST
    Wang, B
    Xu, YY
    Xiang, XB
    Hu, ZH
    Diao, HW
    Kong, GL
    [J]. Science and Technology of Nanomaterials - ICMAT 2003, 2005, 23 : 137 - 140
  • [2] Raman Scattering Spectroscopy and Photoluminescence of GaAs Nanowires
    I. V. Kalachev
    I. A. Milekhin
    E. A. Emel’yanov
    V. V. Preobrazhenskii
    V. S. Tumashev
    A. G. Milekhin
    A. V. Latyshev
    [J]. Optoelectronics, Instrumentation and Data Processing, 2023, 59 : 659 - 666
  • [3] Raman Scattering Spectroscopy and Photoluminescence of GaAs Nanowires
    Kalachev, I. V.
    Milekhin, I. A.
    Emel'yanov, E. A.
    Preobrazhenskii, V. V.
    Tumashev, V. S.
    Milekhin, A. G.
    Latyshev, A. V.
    [J]. OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2023, 59 (06) : 659 - 666
  • [4] Photoluminescence and Raman scattering of silicon nanopowders
    Ovsyuk N.N.
    Volodin V.A.
    Jha P.K.
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77 (09) : 1087 - 1090
  • [5] Enhanced first-order Raman scattering from arrays of vertical silicon nanowires
    Khorasaninejad, M.
    Walia, J.
    Saini, S. S.
    [J]. NANOTECHNOLOGY, 2012, 23 (27)
  • [6] High pressure Raman scattering of silicon nanowires
    Khachadorian, Sevak
    Papagelis, Konstantinos
    Scheel, Harald
    Colli, Alan
    Ferrari, Andrea C.
    Thomsen, Christian
    [J]. NANOTECHNOLOGY, 2011, 22 (19)
  • [7] Characterization of porous silicon by Raman scattering and photoluminescence
    Zuk, J
    Kulik, M
    Andrews, GT
    Kiefte, H
    Clouter, MJ
    Goulding, R
    Rich, NH
    NossarzewskaOrlowska, E
    [J]. THIN SOLID FILMS, 1997, 297 (1-2) : 106 - 109
  • [8] RAMAN-SCATTERING AND PHOTOLUMINESCENCE OF POROUS SILICON
    KARAVANSKII, VA
    OBRAZTSOV, AN
    [J]. SEMICONDUCTORS, 1995, 29 (04) : 302 - 306
  • [9] Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering
    Kiraly, Brian
    Yang, Shikuan
    Huang, Tony Jun
    [J]. NANOTECHNOLOGY, 2013, 24 (24)
  • [10] Temperature-dependent Raman scattering of silicon nanowires
    Su, ZX
    Sha, J
    Pan, GW
    Liu, JX
    Yang, DR
    Dickinson, C
    Zhou, WZ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (03): : 1229 - 1234