Data-Driven Studies of Li-Ion-Battery Materials

被引:44
|
作者
Kauwe, Steven K. [1 ]
Rhone, Trevor David [2 ]
Sparks, Taylor D. [1 ]
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
battery materials; machine learning; materials discovery; MACHINE; PERFORMANCE;
D O I
10.3390/cryst9010054
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Batteries are a critical component of modern society. The growing demand for new battery materialscoupled with a historically long materials development timehighlights the need for advances in battery materials development. Understanding battery systems has been frustratingly slow for the materials science community. In particular, the discovery of more abundant battery materials has been difficult. In this paper, we describe how machine learning tools can be exploited to predict the properties of battery materials. In particular, we report the challenges associated with a data-driven investigation of battery systems. Using a dataset of cathode materials and various statistical models, we predicted the specific discharge capacity at 25 cycles. We discuss the present limitations of this approach and propose a paradigm shift in the materials research process that would better allow data-driven approaches to excel in aiding the discovery of battery materials.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Prediction of Li-ion battery state of health based on data-driven algorithm
    Sun, Hanlei
    Yang, Dongfang
    Du, Jiaxuan
    Li, Ping
    Wang, Kai
    ENERGY REPORTS, 2022, 8 : 442 - 449
  • [2] Data-Driven modeling for Li-ion battery using dynamic mode decomposition
    Abu-Seif, Mohamed A.
    Abdel-Khalik, Ayman S.
    Hamad, Mostafa S.
    Hamdan, Eman
    Elmalhy, Noha A.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 11277 - 11290
  • [3] Data-driven Prognostic Model of Li-ion Battery with Deep Learning Algorithm
    Khumprom, Phattara
    Yodo, Nita
    2019 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2019) - R & M IN THE SECOND MACHINE AGE - THE CHALLENGE OF CYBER PHYSICAL SYSTEMS, 2019,
  • [4] Data-Driven Prediction of Li-Ion Battery Degradation Using Predicted Features
    Xing, Wei W.
    Shah, Akeel A.
    Shah, Nadir
    Wu, Yinpeng
    Xu, Qian
    Rodchanarowan, Aphichart
    Leung, Puiki
    Zhu, Xun
    Liao, Qiang
    PROCESSES, 2023, 11 (03)
  • [5] Data-driven SOC Estimation with Adaptive Residual Generator for Li-ion Battery
    Xu, Xiaoyi
    Huang, Cong-Sheng
    Chow, Mo-Yuen
    Luo, Hao
    Yin, Shen
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 2612 - 2616
  • [6] A comprehensive data network for data-driven study of battery materials
    Xu, Yibin
    Wu, Yen-Ju
    Li, Huiping
    Fang, Lei
    Hayashi, Shigenobu
    Oishi, Ayako
    Shimizu, Natsuko
    Caputo, Riccarda
    Villars, Pierre
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2024, 25 (01)
  • [7] Data-Driven Modeling of Li-Ion Battery Based on the Manufacturer Specifications and Laboratory Measurements
    Di Fonso, Roberta
    Cecati, Carlo
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    Bharadwaj, Pallavi
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2025, 61 (02) : 3485 - 3493
  • [8] A Novel Hybrid Data-driven Method for Li-ion Battery Internal Temperature Estimation
    Liu, Kailong
    Li, Kang
    Deng, Jing
    2016 UKACC 11TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2016,
  • [9] Data-driven Modeling of Li-ion Battery based on the Manufacturer Specifications and Laboratory Measurements
    Di Fonso, Roberta
    Cecati, Carlo
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    Bharadwaj, Pallavi
    2022 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS, PEDES, 2022,
  • [10] Prediction of Li-Ion battery State-Of-Health based on data-driven approach
    Lotano, Daniel
    Ciani, Lorenzo
    Giaquinto, Nicola
    Patrizi, Gabriele
    Scarpetta, Marco
    Spadavecchia, Maurizio
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,