Monogamous latin squares

被引:12
|
作者
Danziger, Peter [1 ]
Wanless, Ian M. [2 ]
Webb, Bridget S. [3 ]
机构
[1] Ryerson Univ, Dept Math, Toronto, ON M5B 2K3, Canada
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] Open Univ, Milton Keynes MK7 6AA, Bucks, England
基金
加拿大自然科学与工程研究理事会;
关键词
Latin square; Monogamous square; MOLS; maxMOLS; Transversal; ORTHOGONAL MATES; MAXIMAL SETS; TRANSVERSALS; PLEXES;
D O I
10.1016/j.jcta.2010.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show for all n is not an element of {1, 2, 4} that there exists a latin square of order n that contains two entries gamma(1) and gamma(2) such that there are some transversals through gamma(1) but they all include gamma(2) as well. We use this result to show that if n > 6 and n is not of the form 2p for a prime p >= 11 then there exists a latin square of order n that possesses an orthogonal mate but is not in any triple of MOLS. Such examples provide pairs of 2-maxMOLS. (C) 2010 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:796 / 807
页数:12
相关论文
共 50 条
  • [1] Latin Squares, Partial Latin Squares and Their Generalized Quotients
    Glebsky L. Yu
    Carlos J. Rubio
    Graphs and Combinatorics, 2005, 21 : 365 - 375
  • [2] Latin squares, partial latin squares and their generalized quotients
    Yu, GL
    Rubio, CJ
    GRAPHS AND COMBINATORICS, 2005, 21 (03) : 365 - 375
  • [3] Latin Squares
    Bagchi, Bhaskar
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2012, 17 (09): : 895 - 902
  • [4] LATIN SQUARES
    DREW, BA
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1958, 50 (07): : A77 - A77
  • [5] Latin squares
    Bhaskar Bagchi
    Resonance, 2012, 17 (9) : 895 - 902
  • [6] Latin and cross Latin squares
    Emanouilidis, Emanuel
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (05) : 697 - 700
  • [7] THEORY AND APPLICATION OF SUM COMPOSITION OF LATIN SQUARES AND ORTHOGONAL LATIN SQUARES
    HEDAYAT, A
    SEIDEN, E
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 54 (02) : 85 - 113
  • [8] SIGNS ON LATIN SQUARES
    MARINI, A
    PIRILLO, G
    ADVANCES IN APPLIED MATHEMATICS, 1994, 15 (04) : 490 - 505
  • [9] Incomplete Latin squares
    Yates, F
    JOURNAL OF AGRICULTURAL SCIENCE, 1936, 26 : 301 - 315
  • [10] On completing Latin squares
    Hajirasouliha, Iman
    Jowhari, Hossein
    Kumar, Ravi
    Sundaram, Ravi
    STACS 2007, PROCEEDINGS, 2007, 4393 : 524 - +