Inference for general parametric functions in Box-Cox-type transformation models

被引:4
|
作者
Yang, Zhenlin [1 ]
Wu, Eden Ka-Ho [2 ]
Desmond, Anthony F. [3 ]
机构
[1] Singapore Management Univ, Sch Econ, Singapore 178903, Singapore
[2] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[3] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
关键词
Box-Cox transformation; confidence interval; marginal effect; percentile function; robustness; Survivor function; test; variance inflation factor;
D O I
10.1002/cjs.5550360208
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors propose a simple but general method of inference for a parametric function of the Box-Cox-type transformation model. Their approach is built upon the classical normal theory but takes parameter estimation into account. It quickly leads to test statistics and confidence intervals for a linear combination of scaled or unscaled regression coefficients, as well as for the survivor function and marginal effects on the median or other quantile functions of an original response. The authors show through simulations that the finite-sample performance of their method is often superior to the delta method, and that their approach is robust to mild departures from normality of error distributions. They illustrate their approach with a numerical example.
引用
收藏
页码:301 / 319
页数:19
相关论文
共 50 条
  • [1] Simultaneous inference in general parametric models
    Hothorn, Torsten
    Bretz, Frank
    Westfall, Peter
    [J]. BIOMETRICAL JOURNAL, 2008, 50 (03) : 346 - 363
  • [2] Interpretable inference on the mixed effect model with the Box-Cox transformation
    Maruo, K.
    Yamaguchi, Y.
    Noma, H.
    Gosho, M.
    [J]. STATISTICS IN MEDICINE, 2017, 36 (15) : 2420 - 2434
  • [3] bcmixed: A Package for Median Inference on Longitudinal Data with the Box-Cox Transformation
    Maruo, Kazushi
    Ishii, Ryota
    Yamaguchi, Yusuke
    Gosho, Masahiko
    [J]. R JOURNAL, 2021, 13 (02): : 253 - 265
  • [4] FORECASTING PERFORMANCE OF MODELS USING THE BOX-COX TRANSFORMATION
    SMALLWOOD, DM
    BLAYLOCK, JR
    [J]. AGRICULTURAL ECONOMICS RESEARCH, 1986, 38 (04): : 14 - 24
  • [5] Inference for the Richards growth model using Box and Cox transformation and bootstrap techniques
    Loibel, S
    do Val, JBR
    Andrade, MG
    [J]. ECOLOGICAL MODELLING, 2006, 191 (3-4) : 501 - 512
  • [6] Functional coefficient cointegration models with Box-Cox transformation
    Lin, Yingqian
    Tu, Yundong
    [J]. ECONOMICS LETTERS, 2024, 234
  • [7] Forecasting Practice from Box-Cox Transformation Models
    Gao Renxiang Institute of Applied Mathematics
    [J]. Journal of Systems Engineering and Electronics, 1997, (03) : 27 - 33
  • [8] USE OF THE BOX-COX TRANSFORMATION WITH BINARY RESPONSE MODELS
    GUERRERO, VM
    JOHNSON, RA
    [J]. BIOMETRIKA, 1982, 69 (02) : 309 - 314
  • [9] A generalised Box-Cox transformation for the parametric estimation of clinical reference intervals
    Gillard, Jonathan
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (10) : 2231 - 2245
  • [10] Inference for Box-Cox Transformed Threshold GARCH Models with Nuisance Parameters
    Lee, Sangyeol
    Lee, Taewook
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (03) : 568 - 589