Deep Learning with Microfluidics for Biotechnology

被引:143
|
作者
Riordon, Jason [1 ]
Sovilj, Dusan [1 ]
Sanner, Scott [1 ]
Sinton, David [1 ]
Young, Edmond W. K. [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
ON-A-CHIP; HIGH-THROUGHPUT; SINGLE-CELL; NEURAL-NETWORKS; LABEL-FREE; SPERM; TECHNOLOGY; MICROSCOPY; PREDICTION; SELECTION;
D O I
10.1016/j.tibtech.2018.08.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advances in high-throughput and multiplexed microfluidics have rewarded biotechnology researchers with vast amounts of data but not necessarily the ability to analyze complex data effectively. Over the past few years, deep artificial neural networks (ANNs) leveraging modern graphics processing units (GPUs) have enabled the rapid analysis of structured input data - sequences, images, videos - to predict complex outputs with unprecedented accuracy. While there have been early successes in flow cytometry, for example, the extensive potential of pairing microfluidics (to acquire data) and deep learning (to analyze data) to tackle biotechnology challenges remains largely untapped. Here we provide a roadmap to integrating deep learning and microfluidics in biotechnology laboratories that matches computational architectures to problem types, and provide an outlook on emerging opportunities.
引用
收藏
页码:310 / 324
页数:15
相关论文
共 50 条
  • [1] Microfluidics in biotechnology
    Barry R.
    Ivanov D.
    [J]. Journal of Nanobiotechnology, 2 (1)
  • [2] Microfluidics for microalgal biotechnology
    Ozdalgic, Berin
    Ustun, Merve
    Dabbagh, Sajjad Rahmani
    Haznedaroglu, Berat Z.
    Kiraz, Alper
    Tasoglu, Savas
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (04) : 1545 - 1563
  • [3] Microfluidics guided by deep learning for cancer immunotherapy screening
    Ao, Zheng
    Cai, Hongwei
    Wu, Zhuhao
    Hu, Liya
    Nunez, Asael
    Zhou, Zhuolong
    Liu, Hongcheng
    Bondesson, Maria
    Lu, Xiongbin
    Lu, Xin
    Dao, Ming
    Guo, Feng
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (46)
  • [4] Microfluidics and beyond - Devices for applications in biotechnology
    Daub, M
    Kaack, RM
    Gutmann, O
    Steinert, CP
    Niekrawietz, R
    Koltay, P
    de Heij, B
    Zengerle, R
    [J]. NANOENGINEERED ASSEMBLIES AND ADVANCED MICRO/NANOSYSTEMS, 2004, 820 : 381 - 391
  • [5] Applications of microfluidics in microalgae biotechnology: A review
    Juang, Yi-Je
    Chang, Jo-Shu
    [J]. BIOTECHNOLOGY JOURNAL, 2016, 11 (03) : 327 - 335
  • [6] Recent Deep Learning Studies for Microfluidics Assays of Yeast Lifespan
    Qin, H.
    Ghafari, M.
    Dang, W.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 1208 - 1209
  • [7] With droplet microfluidics to high-speed biotechnology
    Kästner B.
    Hengoju S.
    Svensson C.-M.
    Figge M.T.
    Rosenbaum M.A.
    [J]. BIOspektrum, 2021, 27 (3) : 260 - 262
  • [8] Recent developments of microfluidics as a tool for biotechnology and microbiology
    Scheler, Ott
    Postek, Witold
    Garstecki, Piotr
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2019, 55 : 60 - 67
  • [9] IMTB 2017 Conference: At the intersection of microfluidics and biotechnology
    Znidarsic-Plazl, Polona
    Zelic, Bruno
    [J]. NEW BIOTECHNOLOGY, 2018, 47 : III - IV
  • [10] Deep learning with microfluidics for on-chip droplet generation, control, and analysis
    Sun, Hao
    Xie, Wantao
    Mo, Jin
    Huang, Yi
    Dong, Hui
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11