A Ramsey-type bound for rectangles

被引:0
|
作者
Toth, G
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that for any rectangle T and for any 2-coloring of the points of the 5-dimensional Euclidean space, one can always find a rectangle T' congruent to T, all of whose vertices are of the same color. We also show that for any k-coloring of the k(2) + o(k(2))-dimensional space, there is a monochromatic rectangle congruent to any given rectangle. (C) 1996 John Wiley & Sons, Inc.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 50 条
  • [1] A new lower, bound for a Ramsey-type problem
    Sudakov, B
    COMBINATORICA, 2005, 25 (04) : 487 - 498
  • [2] A New Lower Bound For A Ramsey-Type Problem
    Benny Sudakov*
    Combinatorica, 2005, 25 : 487 - 498
  • [3] ON A RAMSEY-TYPE PROBLEM
    CHUNG, FRK
    JOURNAL OF GRAPH THEORY, 1983, 7 (01) : 79 - 83
  • [4] RAMSEY-TYPE THEOREMS
    ERDOS, P
    HAJNAL, A
    DISCRETE APPLIED MATHEMATICS, 1989, 25 (1-2) : 37 - 52
  • [5] On metric Ramsey-type phenomena
    Bartal, Y
    Linial, N
    Mendel, M
    Naor, A
    ANNALS OF MATHEMATICS, 2005, 162 (02) : 643 - 709
  • [6] A Ramsey-type topological theorem
    Gerlits, J
    Szentmiklóssy, Z
    TOPOLOGY AND ITS APPLICATIONS, 2002, 125 (02) : 343 - 355
  • [7] On metric Ramsey-type dichotomies
    Bartal, Y
    Linial, N
    Mendel, M
    Naor, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 : 289 - 303
  • [8] A Ramsey-type result for the hypercube
    Alon, Noga
    Radoicic, Rados
    Sudakov, Benny
    Vondrak, Jan
    JOURNAL OF GRAPH THEORY, 2006, 53 (03) : 196 - 208
  • [9] SOME RAMSEY-TYPE THEOREMS
    ERDOS, P
    GALVIN, F
    DISCRETE MATHEMATICS, 1991, 87 (03) : 261 - 269
  • [10] AN UNPROVABLE RAMSEY-TYPE THEOREM
    LOEBL, M
    NESETRIL, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (03) : 819 - 824