A-Spline Regression for Fitting a Nonparametric Regression Function with Censored Data

被引:2
|
作者
Yilmaz, Ersin [1 ]
Ahmed, Syed Ejaz [2 ]
Aydin, Dursun [1 ]
机构
[1] Mugla Sitki Kocman Univ, Fac Sci, Stat, TR-48000 Mugla, Turkey
[2] Brock Univ, Fac Sci Math & Stat, St Catharines, ON L2S 3A1, Canada
来源
STATS | 2020年 / 3卷 / 02期
关键词
adaptive splines; nonparametric regression; right-censored data; synthetic data transformation;
D O I
10.3390/stats3020011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to solve the problem of fitting a nonparametric regression function with right-censored data. In general, issues of censorship in the response variable are solved by synthetic data transformation based on the Kaplan-Meier estimator in the literature. In the context of synthetic data, there have been different studies on the estimation of right-censored nonparametric regression models based on smoothing splines, regression splines, kernel smoothing, local polynomials, and so on. It should be emphasized that synthetic data transformation manipulates the observations because it assigns zero values to censored data points and increases the size of the observations. Thus, an irregularly distributed dataset is obtained. We claim that adaptive spline (A-spline) regression has the potential to deal with this irregular dataset more easily than the smoothing techniques mentioned here, due to the freedom to determine the degree of the spline, as well as the number and location of the knots. The theoretical properties of A-splines with synthetic data are detailed in this paper. Additionally, we support our claim with numerical studies, including a simulation study and a real-world data example.
引用
收藏
页码:120 / 136
页数:17
相关论文
共 50 条
  • [1] Nonparametric regression with interval-censored data
    Wen Li Deng
    Zu Kang Zheng
    Ri Quan Zhang
    [J]. Acta Mathematica Sinica, English Series, 2014, 30 : 1422 - 1434
  • [2] NONPARAMETRIC REGRESSION WITH CENSORED SURVIVAL-DATA
    YANDELL, BS
    [J]. BIOMETRICS, 1983, 39 (03) : 813 - 813
  • [3] Nonparametric Regression with Interval-Censored Data
    Wen Li DENG
    Zu Kang ZHENG
    Ri Quan ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2014, 30 (08) : 1422 - 1434
  • [4] Location estimation in nonparametric regression with censored data
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) : 1558 - 1582
  • [5] Nonparametric quantile regression for twice censored data
    Volgushew, Stanislav
    Dette, Holger
    [J]. BERNOULLI, 2013, 19 (03) : 748 - 779
  • [6] Nonparametric Regression with Interval-Censored Data
    Deng, Wen Li
    Zheng, Zu Kang
    Zhang, Ri Quan
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1422 - 1434
  • [7] Nonparametric robust regression estimation for censored data
    Mohamed Lemdani
    Elias Ould Saïd
    [J]. Statistical Papers, 2017, 58 : 505 - 525
  • [8] Nonparametric robust regression estimation for censored data
    Lemdani, Mohamed
    Said, Elias Ould
    [J]. STATISTICAL PAPERS, 2017, 58 (02) : 505 - 525
  • [9] NONPARAMETRIC QUANTILE REGRESSION WITH CENSORED-DATA
    DABROWSKA, DM
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 252 - 259
  • [10] NONPARAMETRIC DENSITY-ESTIMATION FOR CENSORED SURVIVAL-DATA - REGRESSION-SPLINE APPROACH
    ABRAHAMOWICZ, M
    CIAMPI, A
    RAMSAY, JO
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1992, 20 (02): : 171 - 185