A compact linear program for testing optimality of perfect matchings

被引:5
|
作者
Ventura, P
Eisenbrand, F
机构
[1] CNR, Ist Anal Sistemi & Informat, I-00185 Rome, Italy
[2] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
matching; linear programming compact linear programming;
D O I
10.1016/S0167-6377(03)00052-X
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is a longstanding open problem whether there exists a polynomial size description of the perfect matching polytope. We give a partial answer to this question by proving the following result. The polyhedron defined by the constraints of the perfect matching polytope which are active at a given perfect matching can be obtained as the projection of a compact polyhedron. Thus there exists a compact linear program which is unbounded if and only if the perfect matching is not optimal with respect to a given edge weight. This result provides a simple reduction of the maximum weight perfect matching problem to compact linear programming. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:429 / 434
页数:6
相关论文
共 50 条
  • [1] PERFECT MATCHINGS
    BALINSKI, ML
    SIAM REVIEW, 1970, 12 (04) : 570 - &
  • [2] PERFECT MATCHINGS AND PERFECT SQUARES
    JOCKUSCH, W
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 67 (01) : 100 - 115
  • [3] Perfect matchings and perfect powers
    Ciucu, M
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 17 (03) : 335 - 375
  • [4] Perfect Matchings and Perfect Powers
    Mihai Ciucu
    Journal of Algebraic Combinatorics, 2003, 17 : 335 - 375
  • [5] TESTING FOR OPTIMALITY OF LINEAR SYSTEMS
    ANDERSON, BD
    INTERNATIONAL JOURNAL OF CONTROL, 1966, 4 (01) : 29 - &
  • [6] An improved linear bound on the number of perfect matchings in cubic graphs
    Esperet, Louis
    Kral, Daniel
    Skoda, Petr
    Skrekovski, Riste
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (05) : 1316 - 1334
  • [7] Matchings Extend to Perfect Matchings on Hypercube Networks
    Chen, Y-Chuang
    Li, Kun-Lung
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 455 - +
  • [8] Perfect Matchings with Crossings
    Aichholzer, Oswin
    Fabila-Monroy, Ruy
    Kindermann, Philipp
    Parada, Irene
    Paul, Rosna
    Perz, Daniel
    Schnider, Patrick
    Vogtenhuber, Birgit
    ALGORITHMICA, 2024, 86 (03) : 697 - 716
  • [9] Perfect Matchings with Crossings
    Oswin Aichholzer
    Ruy Fabila-Monroy
    Philipp Kindermann
    Irene Parada
    Rosna Paul
    Daniel Perz
    Patrick Schnider
    Birgit Vogtenhuber
    Algorithmica, 2024, 86 : 697 - 716
  • [10] Determinants and perfect matchings
    Ayyer, Arvind
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (01) : 304 - 314