Non-parametric Discrete Registration with Convex Optimisation

被引:0
|
作者
Heinrich, Mattias P. [1 ]
Papiez, Bartlomiej W. [2 ]
Schnabel, Julia A. [2 ]
Handels, Heinz [1 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Univ Oxford, Dept Engn, Inst Biomed Engn, Oxford OX1 2JD, England
来源
基金
英国工程与自然科学研究理事会;
关键词
IMAGE REGISTRATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deformable image registration is an important step in medical image analysis. It enables an automatic labelling of anatomical structures using atlas-based segmentation, motion compensation and multi-modal fusion. The use of discrete optimisation approaches has recently attracted a lot attention for mainly two reasons. First, they are able to find an approximate global optimum of the registration cost function and can avoid false local optima. Second, they do not require a derivative of the similarity metric, which increases their flexibility. However, the necessary quantisation of the deformation space causes a very large number of degrees of freedom with a high computational complexity. To deal with this, previous work has focussed on parametric transformation models. In this work, we present an efficient non-parametric discrete registration method using a filter-based similarity cost aggregation and a decomposition of similarity and regularisation term into two convex optimisation steps. This approach enables non-parametric registration with billions of degrees of freedom with computation times of less than a minute. We apply our method to two different common medical image registration tasks, intra-patient 4D-CT lung motion estimation and inter-subject MRI brain registration for segmentation propagation. We show improvements on current state-of-the-art performance both in terms of accuracy and computation time.
引用
收藏
页码:51 / 61
页数:11
相关论文
共 50 条
  • [1] Non-parametric bounds for non-convex preferences
    Halevy, Yoram
    Persitz, Dotan
    Zrill, Lanny
    [J]. JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2017, 137 : 105 - 112
  • [2] A Non-parametric Discrete Fracture Network Model
    Santiago Gómez
    José A. Sanchidrián
    Pablo Segarra
    Maurizio Bernardini
    [J]. Rock Mechanics and Rock Engineering, 2023, 56 : 3255 - 3278
  • [3] A Non-parametric Discrete Fracture Network Model
    Gomez, Santiago
    Sanchidrian, Jose A.
    Segarra, Pablo
    Bernardini, Maurizio
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2023, 56 (05) : 3255 - 3278
  • [4] Unifying Framework for Decomposition Models of Parametric and Non-parametric Image Registration
    Ibrahim, Mazlinda
    Chen, Ke
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [5] Networks for Joint Affine and Non-parametric Image Registration
    Shen, Zhengyang
    Han, Xu
    Xu, Zhenlin
    Niethammer, Marc
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4219 - 4228
  • [6] Diffeomorphic demons: Efficient non-parametric image registration
    Vercauteren, Tom
    Pennec, Xavier
    Perchant, Aymeric
    Ayache, Nicholas
    [J]. NEUROIMAGE, 2009, 45 (01) : S61 - S72
  • [7] Non-parametric diffeomorphic image registration with the demons algorithm
    Vereauteren, Tom
    Pennec, Xavier
    Perchant, Aymeric
    Ayache, Nicholas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 319 - +
  • [8] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    [J]. BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [9] Topology optimisation of adhesive joints using non-parametric methods
    Ejaz, H.
    Mubashar, A.
    Ashcroft, I. A.
    Uddin, Emad
    Khan, M.
    [J]. INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2018, 81 : 1 - 10