Empirical model of whistler anisotropy instability

被引:5
|
作者
Yoon, Peter H. [1 ,2 ]
Seough, Jung Joon [2 ]
Lee, Junggi [2 ]
An, Junmo [2 ]
Lee, Jae Ok [2 ]
机构
[1] Univ Maryland, IPST, College Pk, MD 20742 USA
[2] Kyung Hee Univ, Sch Space Res, Seoul, South Korea
关键词
dispersion relations; plasma density; plasma instability; plasma simulation; plasma temperature; plasma waves; whistlers; MAGNETOSPHERE; ACCELERATION; ELECTRONS;
D O I
10.1063/1.3647504
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Empirical formulae for the real frequency and growth rate associated with the whistler anisotropy instability are obtained. The electrons are assumed to have an anisotropic distribution function, with Maxwellian parallel distribution. Under such an assumption complex roots of the dispersion relation depend only on two dimensionless parameters, namely, the temperature anisotropy factor A = T-perpendicular to e/T-parallel to e-1, where T-perpendicular to e and T-parallel to e are the perpendicular and parallel electron temperatures, respectively, and parallel electron beta, beta(parallel to) = (8 pi nT(parallel to e)/B-2)(1/2), where n and B are the plasma density and magnetic field intensity, respectively. Comparison against exact numerical roots show that analytical formulae describe the whistler instability over a wide range of parallel electron beta and temperature anisotropy factor. The present result may be useful for circumstances in which the use of exact numerical roots becomes impractical, such as in the radiation belt quasi-linear transport coefficient calculation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3647504]
引用
收藏
页数:6
相关论文
共 50 条
  • [1] On the parameter dependence of the whistler anisotropy instability
    An, Xin
    Yue, Chao
    Bortnik, Jacob
    Decyk, Viktor
    Li, Wen
    Thorne, Richard M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (02) : 2001 - 2009
  • [2] Electron temperature anisotropy regulation by whistler instability
    Kim, H. P.
    Hwang, J.
    Seough, J. J.
    Yoon, P. H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (04) : 4410 - 4419
  • [3] Whistler instability: Electron anisotropy upper bound
    Gary, SP
    Wang, J
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A5) : 10749 - 10754
  • [4] Effects of cold electron density on the whistler anisotropy instability
    Wu, S.
    Denton, R. E.
    Li, W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (02) : 765 - 773
  • [5] TEMPERATURE ANISOTROPY DRIVEN WHISTLER INSTABILITY IN A DENSITY CREST
    KONAR, S
    JAIN, VK
    [J]. PHYSICA SCRIPTA, 1990, 42 (02): : 235 - 238
  • [6] Whistler anisotropy instability: Wave-particle scattering rate
    Nishimura, K
    Gary, SP
    Li, H
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A11)
  • [7] Whistler anisotropy instability with a cold electron component: Linear theory
    Gary, S. Peter
    Liu, Kaijun
    Denton, Richard E.
    Wu, Shuo
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [8] Simulation and Quasi-Linear Theory of Whistler Anisotropy Instability
    Lee, Sang-Yun
    Lee, Ensang
    Seough, Jungjoon
    Lee, Jung-gi
    Hwang, Junga
    Lee, Jae-Jin
    Cho, Kyung-Suk
    Yoon, Peter H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (05) : 3277 - 3290
  • [9] Whistler turbulence vs. whistler anisotropy instability: Particle-in-cell simulation and statistical analysis
    Cui, Chen
    Gary, S. Peter
    Wang, Joseph
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [10] Whistler anisotropy instability at low electron β: Particle-in-cell simulations
    Gary, S. Peter
    Liu, Kaijun
    Winske, Dan
    [J]. PHYSICS OF PLASMAS, 2011, 18 (08)