Using element and document profile for information clustering

被引:0
|
作者
Lai, J [1 ]
Soh, B [1 ]
机构
[1] La Trobe Univ, Dept Comp Sci & Comp Engn, Bundoora, Vic 3083, Australia
关键词
elements; clustering; information filtering; information retrieval; search engine; World Wide Web;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The tremendous growth in the amount of information available and the number of visitors to web sites in the recent years poses some key challenges for information filtering and retrieval. Web visitors not only expect high quality and relevant information, but also wish that the information be presented in an as efficient way as possible. The traditional filtering methods, however, only consider the relevant values of document. These conventional methods fail to consider the efficiency of documents retrieval. In this paper, we propose a new algorithm to calculate an index called document similarity score based on elements of the document. Using the index, document profile will be derived. Any documents with the similarity score above a given threshold will be clustered. Using these pre-clustered documents, information filtering and retrieval can be made more efficient.
引用
收藏
页码:503 / 506
页数:4
相关论文
共 50 条
  • [1] DOCUMENT CLUSTERING WITH BURSTY INFORMATION
    Hoonlor, Apirak
    Szymanski, Boleslaw K.
    Zaki, Mohammed J.
    Chaoji, Vineet
    [J]. COMPUTING AND INFORMATICS, 2012, 31 (06) : 1533 - 1555
  • [2] Semantic Document Clustering Using Information from WordNet and DBPedia
    Stanchev, Lubomir
    [J]. 2018 IEEE 12TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2018, : 100 - 107
  • [3] Clustering Document Fragments using Background Color and Texture Information
    Chanda, Sukalpa
    Franke, Katrin
    Pal, Umapada
    [J]. DOCUMENT RECOGNITION AND RETRIEVAL XIX, 2012, 8297
  • [4] Boosting Discrimination Information Based Document Clustering Using Consensus and Classification
    Sheri, Ahmad Muqeem
    Rafique, Muhammad Aasim
    Hassan, Malik Tahir
    Junejo, Khurum Nazir
    Jeon, Moongu
    [J]. IEEE ACCESS, 2019, 7 : 78954 - 78962
  • [5] A Method for Profile Clustering Using Ontology Alignment in Personalized Document Retrieval Systems
    Maleszka, Bernadetta
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2015), PT I, 2015, 9329 : 410 - 420
  • [6] Incorporating semantic and syntactic information in document representation for document clustering
    Wang, Yong
    Hodges, Julia
    [J]. WMSCI 2005: 9TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 8, 2005, : 278 - 283
  • [7] A journal paper filtering using the profile revised by patent document information
    Systems Development Laboratory, Hitachi, Ltd., 1099, Ozenji, Asao-ku, Kawasaki-si, Kanagawa 215-0013, Japan
    不详
    [J]. IEEJ Trans. Electron. Inf. Syst, 2 (358-366):
  • [8] Document Clustering Using Gravitational Ensemble Clustering
    Sadeghian, Armindokht Hashempour
    Nezamabadi-pour, Hossein
    [J]. 2015 INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2015, : 240 - 245
  • [9] DOCUMENT AS AN ELEMENT OF THE INFORMATION ENVIRONMENT OF SOCIETY
    Mazur, L. N.
    [J]. HERALD OF AN ARCHIVIST, 2015, (02): : 119 - 137
  • [10] A Roadmap to Integrate Document Clustering in Information Retrieval
    Subhashini, R.
    Kumar, V. Jawahar Senthil
    [J]. INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2011, 1 (01) : 31 - 44