Role of particle size in nanocrystalline TiO2-based photocatalysts

被引:1366
|
作者
Zhang, ZB
Wang, CC
Zakaria, R
Ying, JY [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1998年 / 102卷 / 52期
关键词
D O I
10.1021/jp982948+
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a systematic study on the role of particle size in pure and doped nanocrystalline TiO2 photocatalysts, which was made possible by a versatile wet-chemical process capable of generating near-agglomeration-free TiO2 with well-controlled particle sizes and dopant dispersion. It is shown that particle size is a crucial factor in the dynamics of the electron/hole recombination process. For TiO2 particles with 6 or 11 nm diameter, Fe3+ dopants were added to inhibit the charge carrier surface recombination. The optimal Fe3+ dopant concentration for different particle sizes was identified, and this concentration was found to decrease with increasing particle size. To assist electron and hole separation in TiO2 with 21 nm diameter, Nb5+ dopants were introduced in combination with minor surface Pt dispersion. These carefully engineered nanocrystalline TiO2 catalysts showed higher reactivities than Degussa P25 TiO2 material in photocatalytic decomposition of chloroform.
引用
收藏
页码:10871 / 10878
页数:8
相关论文
共 50 条
  • [1] Electrospun TiO2-Based Photocatalysts
    Xu, Feiyan
    Tan, Haiyan
    Fan, Jiajie
    Cheng, Bei
    Yu, Jiaguo
    Xu, Jingsan
    SOLAR RRL, 2021, 5 (06):
  • [2] Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts
    Ola, Oluwafunmilola
    Maroto-Valer, M. Mercedes
    JOURNAL OF CATALYSIS, 2014, 309 : 300 - 308
  • [3] Hydrothermal synthesis of efficient TiO2-based photocatalysts
    V. K. Ivanov
    V. D. Maksimov
    A. S. Shaporev
    A. E. Baranchikov
    B. P. Churagulov
    I. A. Zvereva
    Yu. D. Tret’yakov
    Russian Journal of Inorganic Chemistry, 2010, 55 : 150 - 154
  • [4] Enhancement of the activity of TiO2-based photocatalysts: a review
    Iliev, V.
    Tomova, D.
    Eliyas, A.
    Rakovsky, S.
    Anachkov, M.
    Petrov, L.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2015, 47 : 5 - 11
  • [5] Sunlight-Operated TiO2-Based Photocatalysts
    Barba-Nieto, Irene
    Caudillo-Flores, Uriel
    Fernandez-Garcia, Marcos
    Kubacka, Anna
    MOLECULES, 2020, 25 (17):
  • [6] Water Splitting on Rutile TiO2-Based Photocatalysts
    Miyoshi, Akinobu
    Nishioka, Shunta
    Maeda, Kazuhiko
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18204 - 18219
  • [7] TiO2-Based Nanostructures, Composites and Hybrid Photocatalysts
    Lettieri, Stefano
    Pavone, Michele
    MATERIALS, 2022, 15 (04)
  • [8] Modification engineering of TiO2-based nanoheterojunction photocatalysts
    Zhao Y.
    Shu Y.
    Linghu X.
    Liu W.
    Di M.
    Zhang C.
    Shan D.
    Yi R.
    Wang B.
    Chemosphere, 2024, 346
  • [9] Hydrothermal Synthesis of Efficient TiO2-Based Photocatalysts
    Ivanov, V. K.
    Maksimov, V. D.
    Shaporev, A. S.
    Baranchikov, A. E.
    Churagulov, B. P.
    Zvereva, I. A.
    Tret'yakov, Yu. D.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2010, 55 (02) : 150 - 154
  • [10] A review on TiO2-based Z-scheme photocatalysts
    Qi, Kezhen
    Cheng, Bei
    Yu, Jiaguo
    Ho, Wingkei
    CHINESE JOURNAL OF CATALYSIS, 2017, 38 (12) : 1936 - 1955