DIRECTION CURVES OF GENERALIZED BERTRAND CURVES AND INVOLUTE-EVOLUTE CURVES IN E4

被引:0
|
作者
Onder, Mehmet
机构
关键词
Direction curve; (1,3)-Bertrand-direction curve; (0,2)-involute-direction curve; FRENET CURVE;
D O I
10.31801/cfsuasmas.950707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we define (1,3)-Bertrand-direction curve and (1,3)-Bertrand-donor curve in the 4-dimensional Euclidean space E-4. We introduce necessary and sufficient conditions for a special Frenet curve to have a (1,3)-Bertrand-direction curve. We introduce the relations between Frenet vectors and curvatures of these direction curves. Furthermore, we investigate whether (1,3)-evolute-donor curves in E-4 exist and show that there is no (1,3)-evolute-donor curve in E-4.
引用
收藏
页码:326 / 338
页数:13
相关论文
共 50 条
  • [1] Generalized quaternionic involute-evolute curves in the Euclidean four-space E4
    Hanif, Muhammad
    Onder, Mehmet
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4769 - 4780
  • [2] ON THE SABBAN FRAME BELONGING TO INVOLUTE-EVOLUTE CURVES
    Senyurt, Suleyman
    Altun, Yasin
    Cevahir, Ceyda
    Kocayigit, Huseyin
    [J]. THERMAL SCIENCE, 2019, 23 : S413 - S425
  • [3] INVOLUTE-EVOLUTE CURVES ACCORDING TO MODIFIED ORTHOGONAL FRAME
    Azak, Ayse Zeynep
    [J]. JOURNAL OF SCIENCE AND ARTS, 2021, (02): : 385 - 394
  • [4] Special Involute-Evolute Partner D-Curves in E-3
    Bektas, Ozcan
    Yuce, Salim
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 6 (01): : 20 - 29
  • [5] Involute-Evolute D-Curves in Minkowski 3-Space E13
    Almaz, Fatma
    Kulahci, Mihriban Alyamac
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (01): : 147 - 156
  • [6] Family of Surfaces with a Common Special Involute and Evolute Curves
    Senyurt, Suleyman
    Ayvaci, Kebire Hilal
    Canli, Davut
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (01): : 160 - 174
  • [7] Generalized Bishop frames of regular curves in E4
    Nomoto, Subaru
    Nozawa, Hiraku
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2024, 53 (01) : 71 - 89
  • [8] On Special Kinds of Involute and Evolute Curves in 4-Dimensional Minkowski Space
    Hanif, Muhammad
    Hou, Zhong Hua
    Nisar, Kottakkaran Sooppy
    [J]. SYMMETRY-BASEL, 2018, 10 (08):
  • [9] A New Approach for the Pseudo-Quaternionic Lorentzian Evolute and Involute Curves
    Karadag, Muge
    [J]. JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2022, 25 (03): : 1369 - 1373
  • [10] The curves of Bertrand and the curves at constant curvature.
    Gambier
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1914, 158 : 236 - 238