Global optimization in protein docking using clustering, underestimation and semidefinite programming

被引:5
|
作者
Marcia, Roummel F.
Mitchell, Julie C.
Wright, Stephen J.
机构
[1] Univ Wisconsin, Dept Biochem, Mitchell Lab, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
来源
OPTIMIZATION METHODS & SOFTWARE | 2007年 / 22卷 / 05期
关键词
protein docking; global optimization; convex underestimation; semidefinite programming;
D O I
10.1080/00207170701203756
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The underestimation of data points by a convex quadratic function is a useful tool for approximating the location of the global minima of potential energy functions that arise in protein-ligand docking problems. Determining the parameters that define the underestimator can be formulated as a convex quadratically constrained quadratic program and solved efficiently using algorithms for semidefinite programming (SDP). In this paper, we formulate and solve the underestimation problem using SDP and present numerical results for active site prediction in protein docking.
引用
收藏
页码:803 / 811
页数:9
相关论文
共 50 条
  • [1] SDU: A semidefinite programming-based underestimation method for Stochastic global optimization in protein docking
    Paschalidis, Ioannis Ch.
    Shen, Yang
    Vakili, Pirooz
    Vajda, Sandor
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) : 664 - 676
  • [2] A Subspace Semi-Definite programming- based Underestimation (SSDU) method for stochastic global optimization in protein docking
    Nan, Feng
    Moghadasi, Mohammad
    Vakili, Pirooz
    Vajda, Sandor
    Kozakov, Dima
    Paschalidis, Ioannis Ch.
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4623 - 4628
  • [3] A Semi-Definite programming-based Underestimation method for global optimization in molecular docking*
    Paschalidis, Ioannis Ch.
    Shen, Yang
    Vajda, Sandor
    Vakili, Pirooz
    [J]. 2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 3675 - 3680
  • [4] Ensemble clustering using semidefinite programming with applications
    Vikas Singh
    Lopamudra Mukherjee
    Jiming Peng
    Jinhui Xu
    [J]. Machine Learning, 2010, 79 : 177 - 200
  • [5] Ensemble clustering using semidefinite programming with applications
    Singh, Vikas
    Mukherjee, Lopamudra
    Peng, Jiming
    Xu, Jinhui
    [J]. MACHINE LEARNING, 2010, 79 (1-2) : 177 - 200
  • [6] TRACE OPTIMIZATION USING SEMIDEFINITE PROGRAMMING
    Cafuta, Kristijan
    Klep, Igor
    Povh, Janez
    [J]. SOR'11 PROCEEDINGS: THE 11TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2011, : 95 - 101
  • [7] Global optimization of rational functions: a semidefinite programming approach
    D. Jibetean
    E. de Klerk
    [J]. Mathematical Programming, 2006, 106 : 93 - 109
  • [8] Global optimization of rational functions: a semidefinite programming approach
    Jibetean, D
    de Klerk, E
    [J]. MATHEMATICAL PROGRAMMING, 2006, 106 (01) : 93 - 109
  • [9] Global optimization for cardinality-constrained minimum sum-of-squares clustering via semidefinite programming
    Piccialli, Veronica
    Sudoso, Antonio M.
    [J]. MATHEMATICAL PROGRAMMING, 2023,
  • [10] On Global Linear Convergence in Stochastic Nonconvex Optimization for Semidefinite Programming
    Zeng, Jinshan
    Ma, Ke
    Yao, Yuan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (16) : 4261 - 4275