Estimation of affine term structure models with spanned or unspanned stochastic volatility

被引:34
|
作者
Creal, Drew D. [1 ]
Wu, Jing Cynthia [1 ,2 ]
机构
[1] Chicago Booth, Chicago, IL 60637 USA
[2] NBER, Cambridge, MA 02138 USA
关键词
Affine term structure models; Unspanned stochastic volatility; Estimation; MAXIMUM-LIKELIHOOD-ESTIMATION; BONDS SPAN; MARKET; IDENTIFICATION; INFORMATION; ALGORITHM; RISK;
D O I
10.1016/j.jeconom.2014.10.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop new procedures for maximum likelihood estimation of affine term structure models with spanned or unspanned stochastic volatility. Our approach uses linear regression to reduce the dimension of the numerical optimization problem yet it produces the same estimator as maximizing the likelihood. It improves the numerical behavior of estimation by eliminating parameters from the objective function that cause problems for conventional methods. We find that spanned models capture the cross-section of yields well but not volatility while unspanned models fit volatility at the expense of fitting the cross-section. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 81
页数:22
相关论文
共 50 条
  • [1] Unspanned Stochastic Volatility in Affine Models: Evidence from Eurodollar Futures and Options
    Bikbov, Ruslan
    Chernov, Mikhail
    [J]. MANAGEMENT SCIENCE, 2009, 55 (08) : 1292 - 1305
  • [2] Affine fractional stochastic volatility models
    Comte, F.
    Coutin, L.
    Renault, E.
    [J]. ANNALS OF FINANCE, 2012, 8 (2-3) : 337 - 378
  • [3] Affine fractional stochastic volatility models
    F. Comte
    L. Coutin
    E. Renault
    [J]. Annals of Finance, 2012, 8 (2-3) : 337 - 378
  • [4] Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives
    Trolle, Anders B.
    Schwartz, Eduardo S.
    [J]. REVIEW OF FINANCIAL STUDIES, 2009, 22 (11): : 4423 - 4461
  • [5] Unspanned stochastic volatility in the multifactor CIR model
    Filipovic, Damir
    Larsson, Martin
    Statti, Francesco
    [J]. MATHEMATICAL FINANCE, 2019, 29 (03) : 827 - 836
  • [6] GMM estimation of affine term structure models
    Hlouskova, Jaroslava
    Soegner, Leopold
    [J]. ECONOMETRICS AND STATISTICS, 2020, 13 : 2 - 15
  • [7] Can Unspanned Stochastic Volatility Models Explain the Cross Section of Bond Volatilities?
    Joslin, Scott
    [J]. MANAGEMENT SCIENCE, 2018, 64 (04) : 1707 - 1726
  • [8] On periodic autoregressive stochastic volatility models: structure and estimation
    Boussaha, Nadia
    Hamdi, Faycal
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (09) : 1637 - 1668
  • [9] Unspanned stochastic volatility and fixed income derivatives pricing
    Casassus, J
    Collin-Dufresne, P
    Goldstein, B
    [J]. JOURNAL OF BANKING & FINANCE, 2005, 29 (11) : 2723 - 2749
  • [10] A didactic note on affine stochastic volatility models
    Kallsen, J
    [J]. FROM STOCHASTIC CALCULUS TO MATHEMATICAL FINANCE: THE SHIRYAEV FESTSCHRIFT, 2006, : 343 - 368