A semi-parametric generalization of the Cox proportional hazards regression model: Inference and applications

被引:24
|
作者
Devarajan, Karthik [1 ]
Ebrahimi, Nader [2 ]
机构
[1] Fox Chase Canc Ctr, Div Populat Sci, Philadelphia, PA 19111 USA
[2] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
关键词
Censored survival data analysis; Crossing hazards; Frailty model; Maximum likelihood; Regression; Spline function; Akaike information criterion; Weibull distribution; Extreme value distribution; SPLINES; TESTS;
D O I
10.1016/j.csda.2010.06.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The assumption of proportional hazards (PH) fundamental to the Cox PH model sometimes may not hold in practice. In this paper, we propose a generalization of the Cox PH model in terms of the cumulative hazard function taking a form similar to the Cox PH model, with the extension that the baseline cumulative hazard function is raised to a power function. Our model allows for interaction between covariates and the baseline hazard and it also includes, for the two sample problem, the case of two Weibull distributions and two extreme value distributions differing in both scale and shape parameters. The partial likelihood approach can not be applied here to estimate the model parameters. We use the full likelihood approach via a cubic B-spline approximation for the baseline hazard to estimate the model parameters. A semi-automatic procedure for knot selection based on Akaike's information criterion is developed. We illustrate the applicability of our approach using real-life data. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [1] Semi-Parametric Contextual Pricing Algorithm using Cox Proportional Hazards Model
    Choi, Young-Geun
    Kim, Gi-Soo
    Choi, Yunseo
    Cho, Wooseong
    Paik, Myunghee Cho
    Oh, Min-hwan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [2] THE ROBUST INFERENCE FOR THE COX PROPORTIONAL HAZARDS MODEL
    LIN, DY
    WEI, LJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) : 1074 - 1078
  • [3] Semi-parametric Regression under Model Uncertainty: Economic Applications
    Malsiner-Walli, Gertraud
    Hofmarcher, Paul
    Gruen, Bettina
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2019, 81 (05) : 1117 - 1143
  • [4] Intrinsic semi-parametric regression model on Grassmannian manifolds with applications
    Sheng, Xuanxuan
    Xiong, Di
    Ying, Shihui
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3830 - 3849
  • [5] PROPORTIONAL HAZARDS (COX) REGRESSION
    KATZ, MH
    HAUCK, WW
    [J]. JOURNAL OF GENERAL INTERNAL MEDICINE, 1993, 8 (12) : 702 - 711
  • [6] Bivariate Semi-Parametric Model: Bayesian Inference
    Debashis Samanta
    Debasis Kundu
    [J]. Methodology and Computing in Applied Probability, 2023, 25
  • [7] Bivariate Semi-Parametric Model: Bayesian Inference
    Samanta, Debashis
    Kundu, Debasis
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (04)
  • [8] Influence diagnostics for the Cox proportional hazards regression model: method, simulation and applications
    Kausar, Tehzeeb
    Akbar, Atif
    Qasim, Muhammad
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (10) : 1580 - 1600
  • [9] A Semi-Parametric Regression Hazards Model for Duration of Singlehood in North-East India
    Devi, Lourembam Neroka
    Singh, Kshetrimayum Anand
    [J]. STATISTICS AND APPLICATIONS, 2024, 22 (01): : 149 - 169
  • [10] Fifty Years with the Cox Proportional Hazards Regression Model
    Per Kragh Andersen
    [J]. Journal of the Indian Institute of Science, 2022, 102 : 1135 - 1144