Symplectic capacities from positive S1-equivariant symplectic homology

被引:32
|
作者
Gutt, Jean [1 ]
Hutchings, Michael
机构
[1] Univ Cologne, Math Inst, Cologne, Germany
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2018年 / 18卷 / 06期
基金
美国国家科学基金会;
关键词
EMBEDDINGS;
D O I
10.2140/agt.2018.18.3537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use positive S-1-equivariant symplectic homology to define a sequence of symplectic capacities c(k) for star-shaped domains in R-2n. These capacities are conjecturally equal to the Ekeland-Hofer capacities, but they satisfy axioms which allow them to be computed in many more examples. In particular, we give combinatorial formulas for the capacities c(k) of any "convex toric domain" or "concave toric domain". As an application, we determine optimal symplectic embeddings of a cube into any convex or concave toric domain We also extend the capacities c(k) to functions of Lionville domains which are almost but not quite symplectic capacities.
引用
收藏
页码:3537 / 3600
页数:64
相关论文
共 50 条