TURAN TYPE INEQUALITIES FOR CONFLUENT HYPERGEOMETRIC FUNCTIONS OF THE SECOND KIND

被引:3
|
作者
Baricz, Arpad [1 ,2 ]
Ponnusamy, Saminathan [3 ]
Singh, Sanjeev [4 ]
机构
[1] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
[2] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[3] Indian Stat Inst, Chennai Ctr, Soc Elect Transact & Secur, MGR Knowledge City, CIT Campus, Madras 600113, Tamil Nadu, India
[4] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
关键词
Confluent hypergeometric functions of the second kind; Turan type inequalities; MODIFIED BESSEL-FUNCTIONS; LOG-CONCAVITY; CONVEXITY; RATIOS;
D O I
10.1556/012.2016.53.1.1330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deduce some tight Turin type inequalities for Tricomi confluent hypergeometric functions of the second kind, which in some cases improve the existing results in the literature. We also give alternative proofs for some already established Thrall type inequalities. Moreover, by using these Turin type inequalities, we deduce some new inequalities for Tricomi confluent hypergeometric functions of the second kind. The key tool in the proof of the Turan type inequalities is an integral representation for a quotient of Tricomi confluent hypergeometric functions, which arises in the study of the infinite divisibility of the Fisher-Snedecor F distribution.
引用
收藏
页码:74 / 92
页数:19
相关论文
共 50 条
  • [1] Some inequalities of the Turan type for confluent hypergeometric functions of the second kind
    Qi, Feng
    Bhukya, Ravi
    Akavaram, Venkatalakshmi
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (01): : 63 - 70
  • [2] Turan Type Inequalities for Tricomi Confluent Hypergeometric Functions
    Baricz, Arpad
    Ismail, Mourad E. H.
    [J]. CONSTRUCTIVE APPROXIMATION, 2013, 37 (02) : 195 - 221
  • [3] Turan type inequalities for hypergeometric functions
    Baricz, Arpad
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3223 - 3229
  • [4] Turan-type inequalities for two hypergeometric supertrigonometric functions associated with Kummer confluent hypergeometric series of first type
    Geng, Lu Lu
    Yang, Xiao Jun
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (12)
  • [5] Turan type inequalities for q-hypergeometric functions
    Baricz, Arpad
    Raghavendar, Kondooru
    Swaminathan, Anbhu
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 168 : 69 - 79
  • [6] TURAN-TYPE INEQUALITIES FOR GAUSS AND CONFLUENT HYPERGEOMETRIC FUNCTIONS VIA CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY
    Bhandari, Piyush Kumar
    Bissu, Sushil Kumar
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (04): : 1285 - 1301
  • [7] Turán Type Inequalities for Tricomi Confluent Hypergeometric Functions
    Árpád Baricz
    Mourad E. H. Ismail
    [J]. Constructive Approximation, 2013, 37 : 195 - 221
  • [8] A gamma type distribution involving a confluent hypergeometric function of the second kind
    Fereira, Johan
    Salinas, Susana
    [J]. REVISTA TECNICA DE LA FACULTAD DE INGENIERIA UNIVERSIDAD DEL ZULIA, 2010, 33 (02): : 169 - 175
  • [9] INEQUALITIES OF TURAN TYPE FOR NON-NORMALIZED ULTRASPHERICAL POLYNOMIALS AND JACOBIAN FUNCTIONS OF SECOND KIND
    MAKAROV, VL
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR, 1972, (02): : 124 - &
  • [10] TURAN-TYPE INEQUALITIES FOR SOME LOMMEL FUNCTIONS OF THE FIRST KIND
    Baricz, Arpad
    Koumandos, Stamatis
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (03) : 569 - 579