Nitrogen Content Estimation of Apple Leaves Using Hyperspectral Analysis

被引:0
|
作者
Sun, Weihao [1 ]
Wang, Dongwei [1 ]
Jin, Ning [2 ]
Xu, Shusheng [1 ]
Bai, Haoran [1 ]
机构
[1] Qingdao Agr Univ, Sch Mech & Elect Engn, Qingdao 266109, Peoples R China
[2] Shenyang Agr Univ, Sch Informat & Elect Engn, Shenyang 110866, Peoples R China
关键词
SPECTRAL REFLECTANCE; VEGETATION INDEXES; CHLOROPHYLL; WHEAT; CROP;
D O I
10.1155/2021/1030706
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Leaf nitrogen content (LNC) is an important factor reflecting the growth quality of plants. We estimated the nitrogen content of apple leaves using hyperspectral wavelength analysis using the differential spectrum, differential spectrum transformation, and vegetation spectrum index with different derivative gaps. We then used the characteristic wavelengths extracted via the correlation coefficient method as the input vectors to the gradient boosting decision tree (GBDT) model for analysis and performed cross-validation to optimize the inversion model parameters. We analyzed the results with different input variables and loss functions and compared the GBDT model with other mainstream algorithm models. The results show that the R-2 value of the optimized GBDT inversion model is higher than that obtained using the random forest (RF) and support vector regression (SVR) models. Thus, the GBDT model is accurate, and the characteristic wavelength analysis is helpful for the tasks of real-time monitoring and detection of apple tree health.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Hyperspectral Estimation Models of Chlorophyll Content in Apple Leaves
    Liang Shuang
    Zhao Geng-xing
    Zhu Xi-cun
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (05) : 1367 - 1370
  • [2] Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging
    Xujun Ye
    Shiori Abe
    Shuhuai Zhang
    [J]. Precision Agriculture, 2020, 21 : 198 - 225
  • [3] Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging
    Ye, Xujun
    Abe, Shiori
    Zhang, Shuhuai
    [J]. PRECISION AGRICULTURE, 2020, 21 (01) : 198 - 225
  • [4] A Study on the Estimation Model of Hyperspectral Reflectivity and Leaf Nitrogen Content of Cotton Leaves
    Li, Xu
    Shi, Ziyan
    Bai, Tiecheng
    Chen, Bailin
    Lv, Xin
    Zhang, Ze
    Zhou, Baoping
    [J]. IEEE ACCESS, 2023, 11 : 74228 - 74238
  • [5] Quantified Estimation of Anthocyanin Content in Mosaic Virus Infected Apple Leaves Based on Hyperspectral Imaging
    Tian Ming-lu
    Ban Song-tao
    Chang Qing-rui
    Zhang Zhuo-ran
    Wu Xu-mei
    Wang Qi
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37 (10) : 3187 - 3192
  • [6] Estimation of Chlorophyll Content in Apple Leaves Infected with Mosaic Disease by Combining Spectral and Textural Information Using Hyperspectral Images
    Song, Zhenghua
    Liu, Yanfu
    Yu, Junru
    Guo, Yiming
    Jiang, Danyao
    Zhang, Yu
    Guo, Zheng
    Chang, Qingrui
    [J]. REMOTE SENSING, 2024, 16 (12)
  • [7] Estimation of nitrogen in cotton leaves using different hyperspectral region data
    Zhang, Qiang
    Ma, Lulu
    Chen, Xiangyu
    Lin, Jiao
    Yin, Caixia
    Yao, Qiushuang
    Lv, Xin
    Zhang, Ze
    [J]. NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2022, 50 (01)
  • [8] In situ hyperspectral data analysis for pigment content estimation of rice leaves
    程乾
    黄敬峰
    王秀珍
    王人潮
    [J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2003, (06) : 106 - 112
  • [9] Hyperspectral Estimation of Nitrogen Content in Winter Wheat Leaves Based on Unmanned Aerial Vehicles
    Liu Mingxing
    Li Changchun
    Feng Haikuan
    Pei Haojie
    Li Zhenhai
    Yang Fuqin
    Yang Guijun
    Xu Shouzhi
    [J]. COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE XI, CCTA 2017, PT II, 2019, 546 : 321 - 339
  • [10] In situ hyperspectral data analysis for pigment content estimation of rice leaves
    Cheng Qian
    Huang Jing-feng
    Wang Xiu-zhen
    Wang Ren-chao
    [J]. Journal of Zhejiang University-SCIENCE A, 2003, 4 (6): : 727 - 733