Analytical solutions to the optimization of a quadratic cost function subject to linear and quadratic equality constraints

被引:11
|
作者
Thng, I
Cantoni, A
Leung, YH
机构
[1] Adaptive Signal Processing Laboratory, Australian Telecommunications Research Institute, Curtin University of Technology, Bentley
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 1996年 / 34卷 / 02期
关键词
global optimization; quadratic cost; quadratic equality constraints; multivariate polynomials; resultants;
D O I
10.1007/BF01182622
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the area of broad-band antenna array signal processing, the global minimum of a quadratic equality constrained quadratic cost minimization problem is often required. The problem posed is usually characterized by a large optimization space (around 50-90 tuples), a large number of linear equality constraints, and a few quadratic equality constraints each having very low rank quadratic constraint matrices. Two main difficulties arise in this class of problem. Firstly, the feasibility region is nonconvex and multiple local minima abound. This makes conventional numerical search techniques unattractive as they are unable to locate the global optimum consistently (unless a finite search area is specified). Secondly, the large optimization space makes the use of decision-method algorithms for the theory of the reals unattractive. This is because these algorithms involve the solution of the roots of univariate polynomials of order to the square of the optimization space. In this paper we present a new algorithm which exploits the structure of the constraints to reduce the optimization space to a more manageable size. The new algorithm relies on linear-algebra concepts, basic optimization theory, and a multivariate polynomial root-solving tool often used by decision-method algorithms.
引用
收藏
页码:161 / 182
页数:22
相关论文
共 50 条