Magnetic resonance measurements of cellular and sub-cellular membrane structures in live and fixed neural tissue

被引:39
|
作者
Williamson, Nathan H. [1 ]
Ravin, Rea [1 ,2 ]
Benjamini, Dan [1 ,3 ]
Merkle, Hellmut [4 ]
Falgairolle, Melanie [4 ]
O'Donovan, Michael James [4 ]
Blivis, Dvir [4 ]
Ide, Dave [4 ,5 ]
Cai, Teddy X. [1 ]
Ghorashi, Nima S. [6 ]
Bai, Ruiliang [1 ,7 ]
Basser, Peter J. [1 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, Bethesda, MD 20814 USA
[2] Celoptics, Rockville, MD USA
[3] Henry Jackson Fdn, Ctr Neurosci & Regenerat Med, Bethesda, MD USA
[4] NINDS, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[5] NIMH, NIH, Bethesda, MD 20892 USA
[6] NHLBI, Cardiovasc Branch, NIH, Bldg 10, Bethesda, MD 20892 USA
[7] Zhejiang Univ, Interdisciplinary Inst Neurosci & Technol, Sch Med, Hangzhou, Peoples R China
来源
ELIFE | 2019年 / 8卷
关键词
AXON DIAMETER DISTRIBUTION; GRADIENT WAVE-FORMS; SPIN-ECHO ANALYSIS; WATER DIFFUSION; RESTRICTED DIFFUSION; SELF-DIFFUSION; MICROSCOPIC ANISOTROPY; INTRACELLULAR WATER; HUMAN ERYTHROCYTES; HIPPOCAMPAL SLICE;
D O I
10.7554/eLife.51101
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop magnetic resonance (MR) methods for real-time measurement of tissue microstructure and membrane permeability of live and fixed excised neonatal mouse spinal cords. Diffusion and exchange MR measurements are performed using the strong static gradient produced by a single-sided permanent magnet. Using tissue delipidation methods, we show that water diffusion is restricted solely by lipid membranes. Most of the diffusion signal can be assigned to water in tissue which is far from membranes. The remaining 25% can be assigned to water restricted on length scales of roughly a micron or less, near or within membrane structures at the cellular, organelle, and vesicle levels. Diffusion exchange spectroscopy measures water exchanging between membrane structures and free environments at 100 s(-1).
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Sub-cellular localization of membrane proteins
    Sadowski, Pawel G.
    Groen, Arnoud J.
    Dupree, Paul
    Lilley, Kathryn S.
    [J]. PROTEOMICS, 2008, 8 (19) : 3991 - 4011
  • [2] Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels
    Humphrey, J. D.
    [J]. CELL BIOCHEMISTRY AND BIOPHYSICS, 2008, 50 (02) : 53 - 78
  • [3] Correlative Microscopy for Nanomanipulation of Sub-Cellular Structures
    Gong, Z.
    Chen, B. K.
    Liu, J.
    Zhou, C.
    Anchel, D.
    Li, X.
    Bazett-Jones, D. P.
    Sun, Y.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5209 - 5214
  • [4] Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-cellular Levels
    J. D. Humphrey
    [J]. Cell Biochemistry and Biophysics, 2008, 50 : 53 - 78
  • [5] Fabrication of polymer neural probes with Sub-cellular features for reduced tissue encapsulation
    Seymour, John P.
    Kipke, Daryl R.
    [J]. 2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 5826 - +
  • [6] Long reach cantilevers for sub-cellular force measurements
    Paneru, Govind
    Thapa, Prem S.
    McBride, Sean P.
    Ramm, Adam
    Law, Bruce M.
    Flanders, Bret N.
    [J]. NANOTECHNOLOGY, 2012, 23 (45)
  • [7] SUB-CELLULAR FRACTIONATION OF INVERTEBRATE NERVOUS-TISSUE
    OLSEN, RW
    [J]. CIBA FOUNDATION SYMPOSIA, 1982, 88 : 153 - 157
  • [8] MEMBRANE-FUSION EVENTS AT THE SUB-CELLULAR LEVEL
    不详
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 1982, 3 (06) : 222 - 224
  • [9] AI enables nanotextural multiplexing of sub-cellular structures
    Vogler, Bela
    Gentsch, Gregor
    Franke, Christian
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S211 - S211
  • [10] Fragility of sub-cellular structures in chronic lymphocytic leukemia
    Katz, Ben-Zion
    Herishanu, Yair
    [J]. INTERNATIONAL JOURNAL OF HEMATOLOGY, 2017, 105 (06) : 707 - 708