On Posterior Properties of the Two Parameter Gamma Family of Distributions

被引:1
|
作者
Ramos, Pedro L. [1 ]
Dey, Dipak K. [2 ]
Louzada, Francisco [3 ]
Ramos, Eduardo [3 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Vicuna Mackenna 4860, Macul 7820436, Region Metropol, Chile
[2] Univ Connecticut, Dept Stat, 215 Glenbrook Rd,U-4120, Storrs, CT 06269 USA
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gamma distribution; improper prior; objective prior; posterior property; FREQUENTIST VALIDITY; QUANTILES;
D O I
10.1590/0001-3765202120190826
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gamma distribution has been extensively used in many areas of applications. In this paper, considering a Bayesian analysis we provide necessary and sufficient conditions to check whether or not improper priors Lead to proper posterior distributions. Further, we also discuss sufficient conditions to verify if the obtained posterior moments are finite. An interesting aspect of our findings are that one can check if the posterior is proper or improper and also if its posterior moments are finite by looking directly in the behavior of the proposed improper prior. To illustrate our proposed methodology these results are applied in different objective priors.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] An alternative two-parameter gamma generated family of distributions: properties and applications
    Cordeiro, Gauss M.
    Nadarajah, Saralees
    Ortega, Edwin M. M.
    Ramires, Thiago G.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (01): : 145 - 173
  • [2] Two-parameter family of distributions: Properties, estimation, and applications
    Belili, Mohamed Cherif
    Alshangiti, Arwa M.
    Gemeay, Ahmed M.
    Zeghdoudi, Halim
    Karakaya, Kadir
    Bakr, M. E.
    Balogun, Oluwafemi Samson
    Atchade, Mintode Nicodeme
    Hussam, Eslam
    [J]. AIP ADVANCES, 2023, 13 (10)
  • [3] Monotonicity properties of the gamma family of distributions
    Pinelis, Iosif
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 171
  • [4] Discrete Gamma Distributions: Properties and Parameter Estimations
    Chakraborty, Subrata
    Chakravarty, Dhrubajyoti
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (18) : 3301 - 3324
  • [5] Some properties of a two-parameter family of poisson distributions of order k
    Galkin V.Ya.
    Ufimtsev M.V.
    [J]. Computational Mathematics and Modeling, 1999, 10 (1) : 37 - 43
  • [6] Family of generalized gamma distributions: Properties and applications
    Alzaatreh, Ayman
    Lee, Carl
    Famoye, Felix
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (03): : 869 - 886
  • [7] INTEGRABLE EXPANSIONS FOR POSTERIOR DISTRIBUTIONS FOR A 2-PARAMETER EXPONENTIAL FAMILY
    SUN, DC
    [J]. ANNALS OF STATISTICS, 1994, 22 (04): : 1808 - 1830
  • [8] Intrinsic posterior regret gamma-minimax estimation for the exponential family of distributions
    Jozani, Mohammad Jafari
    Tabrizi, Nahid Jafari
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1856 - 1874
  • [9] Discrete Burr XII-Gamma Distributions: Properties and Parameter Estimations
    Gholamhossein Yari
    Zahra Tondpour
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 2237 - 2249
  • [10] Discrete Burr XII-Gamma Distributions: Properties and Parameter Estimations
    Yari, Gholamhossein
    Tondpour, Zahra
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2237 - 2249