Prediction of health care expenditure increase: how does pharmacotherapy contribute?

被引:12
|
作者
Joedicke, Annika M. [1 ,2 ]
Zellweger, Urs [3 ]
Tomka, Ivan T. [3 ]
Neuer, Thomas [4 ]
Curkovic, Ivanka [1 ,4 ]
Roos, Malgorzata [5 ]
Kullak-Ublick, Gerd A. [1 ]
Sargsyan, Hayk [4 ]
Egbring, Marco [1 ,4 ]
机构
[1] Univ Zurich, Univ Hosp Zurich, Dept Clin Pharmacol & Toxicol, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Swiss Fed Inst Technol Zurich, Zurich, Switzerland
[3] Helsana Grp, Dept Client Serv & Claims, Zurich, Switzerland
[4] EPhach AG, Data Sci Healthcare, Zurich, Switzerland
[5] Univ Zurich, Dept Biostat, EBPI, Zurich, Switzerland
关键词
Machine learning; Health care utilisation; Health care costs; Boosted decision tree; Neural network; Pharmacology; Claims data; RISK ADJUSTMENT; CLAIMS DATA; COST; INFORMATION; FUTURE;
D O I
10.1186/s12913-019-4616-x
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Rising health care costs are a major public health issue. Thus, accurately predicting future costs and understanding which factors contribute to increases in health care expenditures are important. The objective of this project was to predict patients healthcare costs development in the subsequent year and to identify factors contributing to this prediction, with a particular focus on the role of pharmacotherapy. Methods: We used 2014-2015 Swiss health insurance claims data on 373'264 adult patients to classify individuals' changes in health care costs. We performed extensive feature generation and developed predictive models using logistic regression, boosted decision trees and neural networks. Based on the decision tree model, we performed a detailed feature importance analysis and subgroup analysis, with an emphasis on drug classes. Results: The boosted decision tree model achieved an overall accuracy of 67.6% and an area under the curve-score of 0.74; the neural network and logistic regression models performed 0.4 and 1.9% worse, respectively. Feature engineering played a key role in capturing temporal patterns in the data. The number of features was reduced from 747 to 36 with only a 0.5% loss in the accuracy. In addition to hospitalisation and outpatient physician visits, 6 drug classes and the mode of drug administration were among the most important features. Patient subgroups with a high probability of increase (up to 88%) and decrease (up to 92%) were identified. Conclusions: Pharmacotherapy provides important information for predicting cost increases in the total population. Moreover, its relative importance increases in combination with other features, including health care utilisation.
引用
收藏
页数:11
相关论文
共 50 条