Hypoglycemic and lipid lowering effects of theaflavins in high-fat diet-induced obese mice

被引:6
|
作者
Cai, Xiaqiang [1 ,2 ,3 ,4 ]
Liu, Zenghui [5 ]
Dong, Xu [1 ,2 ,3 ,4 ]
Wang, Ying [1 ,2 ,3 ,4 ]
Zhu, Luwei [1 ,2 ,3 ,4 ]
Li, Mengli [1 ,2 ,3 ,4 ]
Xu, Yan [1 ,2 ,3 ,4 ]
机构
[1] Anhui Agr Univ, State Key Lab Tea Plant Biol & Utilizat, Hefei, Peoples R China
[2] Anhui Agr Univ, Key Lab Tea Biol & Tea Proc, Minist Agr, Hefei, Peoples R China
[3] Anhui Agr Univ, Anhui Prov Lab Tea Plant Biol & Utilizat, Hefei, Peoples R China
[4] Minist Educ, Int Joint Lab Tea Chem & Hlth Effects, Hefei, Peoples R China
[5] Anhui Acad Med Sci, Hefei 230061, Peoples R China
关键词
BLACK TEA POLYPHENOLS; CAMELLIA-SINENSIS; BODY-COMPOSITION; GREEN TEA; ACCUMULATION; ANTIOBESITY; METABOLISM; MECHANISMS; AMPK;
D O I
10.1039/d1fo01966j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Theaflavins (TFs) are the characteristic components of black tea and have been widely acknowledged for their health benefits. The current study aimed to investigate the effects and mechanism of TFs, TF1, TF2a and TF3 on glycolipid metabolism in obese mice induced by a high-fat diet (HFD). Mice were randomly divided into seven groups (n = 8 per group) as follows: low-fat diet (LFD), HFD, HFD + metformin (Met, 100 mg kg(-1) d(-1)), HFD + TFs (TFs, 200 mg kg(-1) d(-1)), HFD + TF1 (TF1, 100 mg kg(-1) d(-1)), HFD + TF2a (TF2a, 100 mg kg(-1) d(-1)), and HFD + TF3 (TF3, 100 mg kg(-1) d(-1)). All groups were studied for 9 weeks continuously. The levels of serum glucose, insulin, TC, TG, LDL and HLD in the plasma, lipid accumulation in the liver, and injury of the liver were investigated. In addition, the effects of TFs and their monomers on the SIRT6/AMPK/SREBP-1/FASN pathway were also evaluated. The results showed that oral administration of TFs, TF1, TF2a and TF3 not only dramatically suppressed weight gain, reduced blood glucose level, and ameliorated insulin resistance but also obviously lowered the levels of serum TC, TG and LDL, suppressed the activities of ALT and AST, and ameliorated hepatic damage in mice fed a HFD when compared to the HFD group. Western blot analysis showed that TFs, TF1, TF2a and TF3 treatments increased the expression of SIRT6 and suppressed the expression levels of SREBP-1 and FASN significantly in mice fed a HFD as compared to the HFD group. The phosphorylation of AMPK in mice fed a HFD was obviously elevated by TF2a and TF3 when compared to the HFD group. These results proved for the first time that TF1, TF2a and TF3 improved the glucolipid metabolism of mice fed a HFD, and activated the SIRT6/AMPK/SREBP-1/FASN signaling pathway to inhibit the synthesis and accumulation of lipids in the liver to ameliorate obesity in mice fed a HFD. These findings indicate that TFs, TF1, TF2a and TF3 as the main functional components of black tea might potentially be used as a food additive for improving glycolipid metabolism and ameliorating obesity, and TF3 may be the best choice.
引用
收藏
页码:9922 / 9931
页数:10
相关论文
共 50 条
  • [1] Antiobesity and lipid lowering effects of theaflavins on high-fat diet induced obese rats
    Jin, Duiyan
    Xu, Yi
    Mei, Xin
    Meng, Qing
    Gao, Ying
    Li, Bo
    Tu, Youying
    JOURNAL OF FUNCTIONAL FOODS, 2013, 5 (03) : 1142 - 1150
  • [2] Antiobesity and Lipid Lowering Effects of Orthosiphon stamineus in High-Fat Diet-Induced Obese Mice
    Seyedan, Atefehalsadat
    Alshawsh, Mohammed Abdullah
    Alshagga, Mustafa Ahmed
    Mohamed, Zahurin
    PLANTA MEDICA, 2017, 83 (08) : 684 - 692
  • [3] Impact of hexabromocyclododecane on lipid and glucose metabolism in high-fat diet-induced obese mice
    Yanagisawa, Rie
    Win-Shwe, Tin-Tin
    Koike, Eiko
    Takano, Hirohisa
    TOXICOLOGY LETTERS, 2013, 221 : S252 - S252
  • [4] Effect of DNJ on Improving Lipid Metabolism in High-fat Diet-induced Obese Mice
    Yang Z.
    Zeng Y.
    Ding X.
    Huang X.
    Journal of Chinese Institute of Food Science and Technology, 2020, 20 (04) : 73 - 80
  • [5] Effects of piperine on lipid metabolism in high-fat diet induced obese mice
    Du, Yafang
    Chen, Yuzhong
    Fu, Xiaoya
    Gu, Jia
    Sun, Yue
    Zhang, Zixiang
    Xu, Jiaying
    Qin, Liqiang
    JOURNAL OF FUNCTIONAL FOODS, 2020, 71
  • [6] Effects of Brassica oleracea extract on impaired glucose and lipid homeostasis in high-fat diet-induced obese mice
    Nanna, Urarat
    Naowaboot, Jarinyaporn
    Chularojmontri, Linda
    Tingpej, Pholawat
    Wattanapitayakul, Suvara
    ASIAN PACIFIC JOURNAL OF TROPICAL BIOMEDICINE, 2019, 9 (02) : 80 - 84
  • [7] Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice
    Naowaboot, Jarinyaporn
    Piyabhan, Pritsana
    Munkong, Narongsuk
    Parklak, Wason
    Pannangpetch, Patchareewan
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2016, 43 (02): : 242 - 250
  • [8] Beneficial Metabolic Effects of Mirabegron In Vitro and in High-Fat Diet-Induced Obese Mice
    Hao, Lei
    Scott, Sheyenne
    Abbasi, Mehrnaz
    Zu, Yujiao
    Khan, Md Shahjalal Hossain
    Yang, Yang
    Wu, Dayong
    Zhao, Ling
    Wang, Shu
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2019, 369 (03): : 419 - 427
  • [9] Effects of semaglutide on vascular structure and proteomics in high-fat diet-induced obese mice
    Yue, Lin
    Chen, Shuchun
    Ren, Qingjuan
    Niu, Shu
    Pan, Xiaoyu
    Chen, Xing
    Li, Zelin
    Chen, Xiaoyi
    FRONTIERS IN ENDOCRINOLOGY, 2022, 13
  • [10] Systemic and local effects of abdominal vibration on high-fat diet-induced obese mice
    Tanabe, Yoshiyuki
    Saito, Maki. T.
    Kamataki, Akihisa
    Sawai, Takashi
    Nakayama, Koichi
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2014, 124 : 198P - 198P